THE RELATIVE INTENSITY OF THE X-RAY LINE $L\gamma_6$ AS THE O" LEVELS ARE FILLED

JOHN N. COOPER, University of Oklahoma, Norman

The x-ray line L_{γ_0} arises from a transition $L_{11}O_{17}$. For elements of atomic number less than 72, L_{γ_0} is either very weak or completely absent, since these elements have only one electron at most in an O_{17} level. Between elements 72 (hafnium) and 79 (gold) the O_{17} and O_7 levels are gradually filled. Consequently one might expect a steady increase in the relative intensity of L_{γ_0} as a function of atomic number for 72 < Z < 80.

Measurements of the intensity of L_{Ye} relative to the intensity of L_{Yi} in this atomic-number region have been made. They are recorded in Table I. These measurements were made by using a two-crystal x-ray spectrometer with an ionization chamber. L_{Yi} was selected as a reference line because (a) it is near L_{Ye} in wavelength, (b) it has the same initial state (L_{11}) , and (c) its intensity relative to other prominent L-series lines is constant in this range of atomic numbers.

It is clear from the data in Table I that the relative intensity of L_{γ_6} increases rapidly and essentially linearly with atomic number while the O_{iv} levels are being filled.

TABLE I

Element	Intensity	Element	Intensity
Ta(73)	2.0	Ir(77)	
W (74)	2.8		
Rh(75)	4.7	Au(79)	11.3
Os(76)	6.2	Te(81)	12.3
www.com.com.com.com.com.com.com.com.com.com			

Intensity of L_{Y_0} relative to L_{Y_1} as 100