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THE HISTORICAL DEVELOPMENT OF TOTAL DIFFEREN.-
TIAL AS THE PRINCIPAL PART OF THE INCREMENT
OF A FUNCTION OF SEVERAL VARIABLES*

NICHOLAS M. OBOUKHOFF, Stlllwater

G. W. Leidbniz. 1t is recognized that already in the seventeenth century
the differential calculus had developed to such an extent that, according
to Moritz Cantor, its only principal deficiency was a unified language and
symbolism. However, its crystallization into a connected and effective
system was, in the first place, accomplished by Leibniz in quite an indepen-
dent and original manner which became a standard form for years to come.

There is no doubt that Newton possessed an analogous solution, per-
haps somewhat earlier than Leibniz obtained his own; yet the fundamental
term “Fluxion” advanced by Newton was, for the first time, made public
in 1687—in his “Principia . . .”, whereas its notation became generally
known through a publication by Wallis only in 1693 and the method itself
in Newton’s “Quadratures of Curves” in 1704.

Earlier than these dates Leibniz had published his articles: “A New
Method for Maxima and Minima . . .” in May and October, 1684 and “On
the Abstruse Geometry” in June 1686, in “Acta Eruditorum”. Thus the
year 1684 became a landmark in the history of mathematics.

In the articles published that year Leibniz established both appropriate
mathematical vocabulary and effective symbolism accompanied by immediate
applications in the form of very useful and still usable operational rules
called by him algorithms of Differential Calculus, further development of
the theory of maxima and minima, and extension of differential equations
to transcendental lines, etc. Also he generalized quadratures into the inverse
methods of tangents, that is, into Integral Calculus, asserting that “sums
and differences or f and 4 are reciprocals”, in his article “On Abstruse
Geometry . . .” and even much earlier in his manuscript of July, 1676 under
the title “Inverse Methods of Tangents . . .”

All this ifs now recognized as the original and most fruitful major
contribution to an unprecedented development of analysis during the
eighteenth and nineteenth centuries. Leibniz, according to M. Cantor, had
visions of this great future; he had, from the very beginning, recognized
the significance of mathematical form while his rivals did not see or did
not want to see it.

Likewise, W. W. Rouse Ball tells us that the fact that all results of
modern mathematics are expressed in language invented by Leibniz has
proved the best monument of his work. This coincidence of the conclusions
of the two historians of mathematics whose attitudes toward Leibniz other-
wise are somewhat different contributes to the impression of reliability
and objectivity of their judgment.

Yet there 18 more than formalism (language and symbolism) in the
differential calculus of Leibniz, that has irrevocably been assimilated by
mathematics: this is his basic concept of the differential, in particular,
and infinitesimals, in general, on which his system has been built.

———————

* Contribution from the State Engincoring Experiment Station, the Oklsboma Agricultural
224 Mechanical College, Btillwater.
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On close examination it has been found that:

1. What Leibnis calls “difference” in analysis is actually “ditferentfal”
in the sense of the principal part of an increment of a function; for instance,
m‘m dlotter to Wallis on March 30, 1699; also his articles of the years

and 1686.

2. He is far from considering quantities infinitely small as tending to
zero and becoming zero in the limit; he dissociates them from the doctrine
of limit in this sense; see same letter and same articles.

3. He says in his Reply to Nieuwentijt: *“By infinitely great and by
infinitely small, we understand something indetinitely great or something
indefinitely small, so that each conducts itself as a sort of class, and not
merely as the last thing of a class.” (Italicized by the writer).

We can clearly see here the elements of neoclassical doctrine of in-
finitesimals such as variadility (“indefinitely small’) and set (“sort of
class”). Likewise it is evident from his “Reply . .. . .” that Leibniz was
awake to the importance of the concept of comtinsum for foundations of
analysis. This vision did not deceive him.

4. “When we speak of infinitely great . . . or of infinitely small quan-
titles . . . we mean quantities that are indefinitely great or indefinitely
small, 1. e. as great as you please or as small as you please g0 that the error
that any one may assign may bde less than a certain assigned quanmy »
(Italicized by the writer). Same source: “Reply

This manner of approach from a standpoint of assigned approximations
will, more than two centuries later, be resumed and elaborated upon by
Whitehead in “An Introduction to Mathematics.” Referring to Weierstrass
he interprets a derivative as a standard or goal of such approximations.

§. The use of dy for designation of a derivative was, with Leibnis,

daz
not only an improvement over Newton’s fluxional notation (“dotism’”), but
its aignificance proved also to be operational, for it formally replaced the
limit process by the elementary operation of division; it had tremendous
repercussion on Calcxlus as such, bringing about an important simplification
of its technique, to mention only, as an example, the setting up of differ-
ential equations. It was a real ‘arithmetization” of calculus from the
operational point of view. Now and then Leibniz interprets dy in terms of
dz
a limit, which is the evidence of his mathematical broadmindedness.

6. Leibniz admits that the doctrine of . . . “intinite extensions succes-
sively xmt.et and greater or infinitely small ones successively less and
less . . .” may be “. . . open to question . . .”; yet he continues: “ ... #
will bc nmc(e»t ﬁmply to make wse of them as a tool that has advantaya
for the purpose of the calculation. . . For they contain a handy means for
reckoning as can manifestly de oer(ﬂed in every case in a rigoross manner
dy the method already stated (Italicized by the writer). See “Reply....—."

Time has brought full justification of these assertions and hopes
entertained by Leibnix. Therefore his doctrine can not be all wrong; cer
tainly there is in it considerably more truth than fallacy in spite of some
obecurity and blur of its characteristics.

The Bighteenth Century. The first half of the eighteenth eentury show-
ed deterioration of the foundations of calculus in the hands of followers
both of Newton and of Leidbais, in pussling contrast to an irresistible impetus
of its growth and development of application. A balance was restored by
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Lagrange when the eighteenth century had ended; the foundations of
calculus were braced by him in a kind of synthesis of the two major doo
trines: those of Leibniz and of Newton.

In the preface to the second edition of his Analytical Mechanics issued
in 1811 Lagrange says: ‘“When we have grasped the spirit of infinitesimal
method and have verified the exactness of its results either by geometrical
method of prime and ultimate ratios, or by the analytical method of derived
functions, we may employ intinitely small quantities as a sure and valuable
means of shortening and simplitying our proofs.” (Quoted in W. W. Rouse
Ball’s “A Short Account of The History of Mathematics”).

It has been seen that Leibniz was at times inclined to a similar synthesis.

The Nineteenth Century. A. L. Cauchy added much rigor to the treat-
ment of both derivatives and differentials. Following in the footsteps of
Leibniz and Lagrange Cauchy showed how total differential could be deter-
mined and found independently of derivatives as the principal part of the
increment of a function, although he did not use this term. K. Weierstrass
introduced {t. For the modern doctrine of Analysis we are mainly indebted
to him and Cantor as well a8 to Dedekind and Jordan.

Yet looking backwards we can clearly discern the great, although blurred
outlines of modern calculus in the characteristics of Leibniz’s doctrine as
analyzed and put forth in the first article of this paper.

In the hands of Leibniz analysis became a particular form of calculus
in full agreement with his earlier far reaching attempts to establish symbolic
rules of operation for thought processes. Leibniz as logician and mathe-
matician promoted one and the same form of structure: that of calculus
both in logic and in analysis.
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