THE ANNELIDS OF A MARINE SERE

A. O. Weese

University of Oklahoma
During the summer of 1929 a general survey was made of the bottom fauna of Fast Sound and adjacent interior waters of the San Juan island group. A preliminary paper based on the data obtained was published in Volume 10 of the proceedings of the Oklahoma Academy of science. Bince that time, through the kindness of Dr. C. Berkley of the Pacific Biological station, Nanaimo, B. C., all annelids collected have been identifled. The results of this work are therefore presented herewith.

Fast sound is a long, narrow, body of water extending into the south side of Orcas Island which surrounds it somewhat in the shape of a horseshoe. The length is about 12 kilometers and the average width 1.8 kilometers. The shore line is rugged except at two points, where the villages of Roaprio and Fast Sound are located. The latter is at the head of the
sound, which is here divided by a low, rocky headland into two shallow bays, Fishing Bay and Ship Bay. Of these the second is bounded by a sandy beach from which the landward slope is gradual to an altitude of perhaps 15 meters, followed by a similar downward slope to sea level on the north side of the island, at a distance of approximately 2 ikilometers. This is the lowest portion of the island and may represent a former stralt. The depth of 'the sound, off shore, varies from 20 to 35 meters but the greater part has a relatively uniform depth of about 30 meters. The bottom material ranges from a very heavy organic mud in Fishing Bay to a mud having a considerable admixture of sand and shell at the mouth.

The principal method of collection was the use of the Peterson bottom sampler, which brings up the surface mud of the sea-bottom with the contained animals from'an area of 0.1 square meter. The larger, less frequent are not accurately represented in the catch nor are motile forms collected with any degree of quantative accuracy. The census of the smaller sessile and inactive forms may be considered, however, as reasonably accurate. In addition a study of the beach fauna at the head of Ship Bay was made, measured areas being dug up to a depth of 20 cm . The stations* from which the principal collections were made were located as follows:

STATIONS M, N, and O, respectively 1.85 m .2 .5 m . and 2.9 m below mean high tide on the west side of Ship Bay; muddy sand.

STATION A, in Fishing Bay, $\mathbf{2 0 - 2 5} \mathrm{m}$. The mud at this station was very dense, giving off a strong odor of hydrogen sulfide. In spite of this, Gran and Thompson (1930)** obtained 5.93 mg . per liter of oxygen at a depth of 20 meters at this station. This was 64 per cent saturation. Larger particles in the mud here were mostly diatom (Coscinodiscus spo.) and foraminiferan shells. There were no sand particles and practically no shell fragments.

STATION B, in Ship Bay 10 m. , sandy mud. Sand particles made up about 2 per cent of the bulk of bottom material. Diatom shells were present here also but not in great abundance.

STATION C, mid-channel, off Rosario, approximately half-way from the mouth to the head of the sound, 30 m . Dense mud, with some small shell fragments. Microscopic examination was not made.

STATION D, south of Rosario (Cascade Bay), 26 m . Dense mud with about 8 per cent Coscinodiscus shells. Gran and Thompson (1. c.) found 5.51 mg , per liter of oxygen near bottom between stations \mathbf{C} and D.

STATION E, mouth of East Sound, off Olga, 24-26 m. Mud containing some small shell fragments with diatom and foraminiferan shells.

STATION F, south of Olga, $28-30 \mathrm{~m}$. Mud with more and larger shell fragments and numerous diatom (Coscinodiscus, Arachnoidiscus and Biddulphia) and fomaminiferan shells.

STATIONS G, H and K were located, ' with Station F, on a line between Obstruction Pass and Upright Channel, 24-50 m. Bottom samples at Station $H, 36 \mathrm{~m}$., gave 32 per cent larger particles, mostly sand and shell fragments with the three diatoms mentioned above also present. At G and K a considerable amount of gravel was also present.

The predominant physiographic processes seem to tend toward land formation at the head of the sound, so that stages of a landward sere may be observed northward from the mouth. Within the sound, deposition of

[^0]adit is tating place at's rapid rate. Quartz sand makes up a considerable portion of this deposit near the mouth of the sound and also, locally (Ship Bay) at the head; molluscan shells also play an appreciable role especially in the lower part, but everywhere organic debris is the most important constituent of the bottom material. Intact 'shells of larger diatoms may make up as much as 10 per cent of the upper layer.

Table I gives the population per square meter at each station of all annellds of which ten or more per square meter were present at some locality and Table II lists all annelids taken.

TABLE I

TABLE II

Family	Species Stations
Leodicidso	Lumbrinerels bifurcata MarntoshC.4.4GEW
	Lumbrinerels impatiens Clap. (emall var.)............................BCIER
	Lumbrinerels Latreill Audociln \& Edwards (emall var.).............. 8
	Lumbrinereds ep.? ..OE
	Dlopatra oensta Moore ... BLR
	Onuphis elegans Johnson ..GB
	Leodiald 8p. 3 ..CEI
Artolidae	Scojoplos elongata Johneon ...BEFS
	Scoloplos sp.? ...NO
Spionidae	Splophanes cirrata Sars ... 8 B
	Gpiophsnes 8p.? .-...DE
	Paraprionosplo tribranchiata BerkeleyABCE
	Eplonides faponicus Moore ...BOS
	Magelona longicornis Johnson... H
	Pygoeplo sp.? ..-... B
	Splonfd 8p.? ...BCE
SHDENTARIA	
Chactopteridae	Leptochaetopterus Potted BerkeleyBCBFGX
	Phyllochsetopterus prolifica Potts ...GH
	Mesochaetopterus Taylord Potts ..G
Cirratulldas	Chaetozone setosa Malmgren .. H
Chlorhaemidae	Styllarotdes plumosa Muller ...E.
	Styllaroides papllata Johnson .. $\mathrm{K}^{\text {K }}$
Scalibregmidae	Scallbregma inclatum RathkeABCDEER
	Sclerochellus pactifus Moore (?) .. K
Ophellidae	Ammotrypane aulogaster Rathke
	Ammotrypane ap.? \qquad
Capltallidae	Heteromastus fllobranchus BerkeleyBCDS
	Notomastus 8p? ..Mns
	Capttellid sp.? ...E.
Maldanidae	Euclymene (reticulata Moore?) .. B
	Maldane Sarsi Malmgren (8mal var.) ..
	Nicomache carinata Moorei................................E
	Praxillella grachls Bars ... $\mathbf{K}^{\text {R }}$
	Rhodine sp. ..K
	Maldanid sp. 3 ...BDFK
Ammocharidae	Ammochares fusiformis (Delle Chiaje) MB
Sternespidae	Sternaspls foseor Stimpson ...BCDEHFCREK
Amphictenidae	Pectinaria auricoma (Muller) .. B
Ampharetidse	Ampharete gracllis Malmgren ..C
	Ampharete arctica Malmgren ...CG
	Amphiotels mucronats Moore ..EKK
Terebellidae	Streblosoma Bairdi (Malmgren) ... 8
	Artacama conifera Moore ...ERK
	Terebellides Stroeml 8ars ..Exs
	Scionells Japonica Mcore .. \mathbf{K}
	Podycirrus perplexus Moore ... $\mathrm{K}^{\text {R }}$
	Polycrrus sp.? ..ERS
	Terebellid 8p.? ...
Sabeliciae	Sabellld ep.? ..F.

[^0]: - A map of this area is given in Proc. Okla. Acad. Bai. 10:26.
 *Gran. F. F. and Thomas G. Thompson. The diatome and the physical and chemical conditions of the sea water of the san Juan Archipelago. Pub. Puget Sound Biol. Sta. 7:169-204, 1990.

