III. A METHOD FDR DETERMINING DISTANCE AND HEIGHT OF OBJECTS BY USE OF A CAMERA

C. W. THORNTHWAITE

University of Oklahoma
When doing reconnaissance work in the field it is often inconvenient to carry very many instruments. Ondinarlly one requires a camera, and the following method explains how it can be used as a primitive surveying instrument. A very fine scale is ruled on the ground glass, and the length of the image of a distance object $\left(A_{1}\right)$ is accurately determined by means of a hand lens. The camera is then moved some given distance toward the object and the length of the image (A_{1}) is again determined. Having the length of the images, $\left({ }_{2}\right)$ and (A_{2}), the focal length of the camera (f), and the distance the camera was moved, (X), it is possible to determine the height (FI) of the distant object and the distance (D) it is from the observer by use of equations, the algebralc development of which follows:

H:D:: $A_{1}: 1$
similar triangles

thus $\mathrm{IH}=\mathrm{A}_{2} \mathrm{D}$

$\mathrm{H}:(\mathrm{D}+\mathrm{X}):: \mathrm{A}_{\mathbf{1}}: \mathbf{f}$
thus $\mathrm{fH}=\mathrm{A}_{1}(\mathrm{D}+\mathrm{X})$
$A_{1} D=A_{1}(D+X)$
$A, D=D+X$
\mathbf{A}_{1}
$\frac{A_{2} D}{A_{1}}-D=X$
$\frac{A_{2} D-A_{2} D}{A_{1}}=\mathbf{X}$
$\frac{D\left(A_{2}-A_{1}\right)}{A_{1}}=X$
$D=\frac{A_{1} X}{A_{1}-A_{1}}$
tmal equation
$A_{2} D=f H$; then $D=\frac{f H}{A_{p}}$
$\frac{f X}{A_{2}}=\frac{A_{1} X}{A_{3}-A_{1}} ;$ then $H=\frac{A_{1} A_{1} X}{f\left(A-A_{1}\right)} \quad$ final equation

