B. GEOLOGICAL SCIENCES I. A PRELIMINARY STUDY OF THE POTENTIAL FERTILITY OF OKLAHOMA SOILS

Horace J. Harper and Henry F. Murphy Oklahoma Agracultural Experiment Station

The total plant food content of soil is important because it is an indication of total crop producing power. Soils with a high potential fertility will contnue to produce large crops under favorable conditions for a long period of time, whereas, all other factors being equal, soils having a low potential fertility will not continue to produce good crops unless a definite soil building program is followed.

Experimental

During the past year a large number of soil samples have been collected from various parts of Oklahoma in order to obtain some data on the relative fertility of the various soils in the state and also to compare the fertility of these soils with that found in the soils of adjoining states. Only the total nitrogen content, total phosphorus content and the acidity of these soils have been determined since these constituents are usually more likely to be the limiting factors than any others in the growth and yield of crops.

The total nitrogen content of these soils was determined by the Kjeldahl method. The total phosphorus was determined by the magnesium nitrate method and the acidity of each sample was determined by the Truog' and the modified Comber' test. The results of these analyses are given in Table 1. The largest amount of nitrogen was found in a virgin Houston black clay located north of Durant County which contained 6940 pounds of nitrogen per acre in the surface 6 2/3 inches of soil. The lowest amount of nitrogen was found in a cropped sample of sand located south of Antlers in Pushmataha County which contained 325 pounds of nitrogen per acre. The maximum amount of phosphorus was found in a somple of silt loam soil located south of Newkirk in Kay County which contained 2040 pounds of phosphorus per acre and the minimum amount of phosphorus was found in a sand near McAlester in Pittsburg County which contained 220 pounds of phosphorus per acre.

The average total nitrogen content of these soils were 2057 pounds and the average total phosphorus content per acre was 601 pounds. The amount of plant food in a good fertile soil

^{1.} Wisconsin Agricultural Experiment Station, Bulletin 312.

^{2.} Journal of the American Society of Agronomy, V. 17: 492-500.

should be about 4000 pounds of nitrogen and 1200 to 1500 pounds of phosphorus per acre, consequently the data secured from the soils analyzed would indicate that the average fertility in Oklahoma soils is only about one-half as much as a good fer, tile soil should contain.

About thirty percent of the soils tested should receive an application of ground limestone in order that alfalfa or sweet clover can make a maximum growth under Oklahoma conditions. There seems to be a marked difference in the response of acid soils to liming depending upon their location with respect to the amount of rainfall to which they are subjected and the total amount of other plant foods which they contain. This problem is being investigated at the present time, A larger percentage of light textured soils were found in the samples secured from v estern Oklahoma than from eastern Oklahoma, however, more samples were secured in eastern Oklahoma and this factor may alter the results considerably.

In Table II the results of the analyses of forty samples of soil taken from the Experiment Station Farm at Stillwater, Oklahoma, are given. These samples do not vary appreciably in total plant food content except in case of the cropped and virgin samples of soil taken from and near the continuous wheat experiment. The virgin soil contained over 3200 pounds of nitrogen per acre while the soil cropped to wheat for thirty-five years contained only about 1900 pounds of nitrogen which means that forty per cent of the total nitrogen content of this soil has been lost. The average plant food content in the soils taken from the Experiment Station Farm is less than the average of the 106 samples secured from various parts of the state. Also these soils are all acid except where ground limestone or other forms of lime have been applied to them. However, because of the fact that the nitrogen and phosphorus content of these soils is low. applications of ground limestone without any other plant food do not produce a very marked increase in crop growth. This same condition exists in many other parts of Oklahoma and many experiments should be conducted fin order to determine the best soil treatment for different crops.

In Table III the results of a comparison of the total nitrogen and total phosphorus of virgin and cropped soil are recorded. These soils yhich have been cropped in most cases less than thirty-five years have lost a large part of their potential fertility. Nitrogen is being lost more rapidly than the phosphorus but the phosphorus losses in all cases except on- are appreciable. Table III. Data on the comparison of the total nitrogen and total phosphorus content of cropped and virgin soils.

	Total I	Vitrogen	Tot'l Ph	osphor's	Perce	nt Loss
Location	Virgin	Cropped	Virgin	Croppd	Nitrogn	Phsphrs
Durant	6940	3390	1280	975	51.1	23.8
Eufaula	2550	1175	550	375	53.9	30.1
Nowata	2760	2070	565	495	25.0	12.3
Purcell	4340	3250	675	665	25.1	1.4
Sapulpa	1680	980	520	435	41.6	16.3
Stillwater	3205	1905	540	430	39.3	20.3

Table IV. Data on the total nitrogen and total phosphorus content of Oklahoma soils as compared with certain other states.

, 1		Av. Nitrogen	Av. Phos.
State or Area	No. of Samples	Content	Content
North Dakota ³	27	6429	1272
Minnesota.	64	5620	1700
Iowa	257	4383	1296
Kansas.	239	3033	827
Missouri ⁷	214	2385	1138
Oklahoma	106	2057	601
Arkansas ²	*	1828	674
Texas	336	1722	459
North Texas	153	1545	415
Panhandle	28	1912	502
South Central Texas	49	1943	668
South Texas	106	1826	415
South Central Texas	49	1943	668
*about 500		1	

In Table IV data are given comparing the average plant food content in Oklahoma soils with that of other states. One very interesting fact occurs in these data and that is, that there is a constant decrease in the average total nitrogen content of the soils in the different states which were studied beginning in the northern part of the Central United States with North Dakota and Minnesota and going south through Iowa, Kansas. Missouri, Oklahoma, Arkansas and Texas. This is due in all probability to climatic conditions which in the past have been more favorable for the accumulation of organic matter in the northern soils due to the fact that the rate of decay has been retarded due to the shorter period of hot weather in summer and due to the fact that the soil is frozen a considerable portion of the year.

The amount of total phosphorus in the soils of the different states varied considerably. Since this element is dependent to a large extent upon the origin of the sediments from which the soil was derived, it would not be expected that climatic conditions would affect its presence in the soil. However, this plant food is also found in larger quantities in the soils of the northern

states, which were studied which means that the potential fertility of these states is greater than that of the other states given in table IV, and the problem of supplying plant food to those soils will not be as important for a long period of time as it will be in the near future for the states of Oklahoma, Arkansas and Texas.

Summary

A preliminary study of the total nitrogen, total phosphorus and the acidity in Oklahoma soils was made on 106 samples of soil taken from various parts of the Experiment Station Farm at Stillwater, Oklahoma.

It was found that there was a wide variation in the total nitrogen and total phosphorus content of Oklahoma soils varying from 6940 pounds to 325 pounds per acre in the case of total nitrogen and 2040 pounds to 220 pounds per acre in case of the total phosphorus. The average total nitrogen content was 2057 pounds and the average total phosphorus content was 601 pounds per acre. These data would indicate that Oklahoma soils on the average contain only about one-half as much total nitrogen and phosphorus as should be present in good fertile soil. About thirty percent of the soils tested should be limed in order to correct the soil acidity which is an important factor in obtaining the best growth of crops like alfalfa and sweet clover.

It was also found that there was a gradual decrease in the nitrogen content of the soils in the central part of the United States beginning from North Dakota and going south to Texas. Climatic conditions are apparently the cause of this condition. The total phosphorus content of the northern states studied was also higher than that of Oklahoma, Arkansas and Texas. The cause of this condition can only be explained on the basis that the original soil forming materials were higher in those regions.

Indications are that the soils in western Oklahoma are not as heavy in texture as the soils in eastern Oklahoma.

				Total Nitro	Tot. Phos	Acie	lity
No.	County	Location	Soil Texture	per 2,000,000 lbs. of soil	per 2,000,000 lbs. of soil	Truog test	Combei test
1	Alfalfa	W. of Cherokee	fine sandy loan	n 2145	680	s1.	na.
2	Bryan	W. of Durant	sandy loam	1485	385	med.	med.
3	Bryan	N .of Durant	fine sandy loan	n 630	605	n. a.	n, a .
4	Bryan	W. of Caddo	clay loam	2380	550	v. sl.	n. a.
5	Bryan	S. W. of Caddo	loam	1980	415	si.+	med.
6	Bryan	N. of Durant	loam	1625	425	st.	med.
7	Bryan	S. of Kenefick	clay loam	3320	725	v. sl.	n, a.
8	Bryan	E. of Ury	loam	3160	585	med.	si.+
9	Bryan	S. of Kenefick	clay loam	4030	1090	.v. sl.	n. a.
10	Bryan	N. E. of Durant	clay loam	3840	690	n. a.	n, a.
11	Bryan	N. of Durant*	clay loam	6940	1280	n. a.	n. a.
12	Bryan	N. of Durant	clay loam	3309	975	v. sl.	n, a.
13	Carter	N. of Ringling Junctic	on sand	1945	265	sl.+	v. sl.
14	Cleveland	N. of Moore	sandy loam	2020	430	n. a.	sl.
15	Cleveland	S. E. of Norman	fine sand	730	360	v. sl.	n, a.
16	Craig	W. of Centralia	silt loam	2120	405	med.+	st.
17	Craig	E. of Centralia	silt loam	4250	900	med	med.
18	Craig	N. of Vinita	silt loam	2735	720	st.	v. st.
19	Craig	N. W .of White Oak	silt loam	4000	990	v. sl.	v. sl.

Table I. Data on the total nitrogen, total phosphorus and the acidity of soil samples collected from various parts of Oklahoma.

21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 40 41 42 43	Creek Creek Creek Creek Creek Custer Dewey Garfield Garfield Garfield Garfield Garfield Garfield Garfield Garfield Garfield Garfield Garfield Garfield Garfield Haskell Haskell Haskell	N. of Heyburn E. of Drumright S. of Sapulpa* S. of Sapulpa S. of Sapulpa S. of Sapulpa S. of Sapulpa S. of Clinton S. of Taloga S. of Covington* S. E. of Covington* S. E. of Covington N. of Fairmont E. of Covington N. of Fairmont E. of Waukomis E. of Waukomis N. of Pauls Valley W. of Pond Creek N. of Cartersville S. of Stigler E. of Keota	fine sand fine sand silt loam silt loam a sandy loam loam fine sandy loam loam fine sandy loam loam sandy loam loam silt loam silt loam silt loam silt loam fine sandy loam loam silt loam silt loam fine sandy loam silt loam silt loam silt loam silt loam silt loam silt loam silt loam	700 1455 1625 1960 1680 980 2070 1690 1560 2195 1790 1500 2185 1920 2845 1710 2580 1980 1455 2040 1485 1960 490 615 1795	435 455 575 520 435 890 650 700 520 570 455 810 780 715 560 780 580 425 750 680 715 245 315 575	v. sl. sl. + n. a. v. sl. v. sl. v. sl. v. sl. v. sl. sl. sl. sl. sl. + sl. sl. sl. + sl. sl. sl. n. a. med. sl. n. a. med. sl. n. a. med. sl. n. a. med. sl. n. a. med. sl. n. a. med. sl. n. a. med. sl. n. a. med. sl. med.	n. a. n. a. n. a. v. sl. n. a. n. a. n. a. n. a. sl. sl. sl. sl. sl. sl. sl. sl
--	---	---	---	--	--	--	--

THE ACADEMY OF SCIENCE

				Total Nitro	Tot. Phos	Acid	lity
	County	County Location	Soil Texture	per 2,000,000 lbs. of soil	per 2,000,000 lbs. of soil	Truog test	Comber test
45	Haskell	E. of Stigler	fine sandy loam	615	305	v. sl.	v. sl.
46	Haskell	S. of Kinita	silt loam	2210	780	sl.	si.
47	Haskell	N. of Cartersville	loam	980	390	sl.+	st.
48	Haskell	W. of Kinita	silt loam	12765		sl.+	med.
49	Jefferson	E. of Waurika	fine sandy loam	1135	410	sl.+	v. sl.
50	Kay	S. of Newkirk	loam	4550		v. sl.	n. a.
51	Kiowa	S. of Roosevelt	sandy loam	1640	1000	sl.+	v. v. sl.
52	Kiowa	S. of Hobart	silt loam	1810	545	n. a.	n. a.
53	Kiowa	N. of Snyder	silt loam	2660		n. a.	n, a.
54	LeFlore	W. of Spiro	silt loam	1810		sl.+	st.
55	LeFlore	S. of Poteau	fine sandy loam	940		v. sl.	n. a.
56	Lincoln	Near Chandler	fine sand	500		v. sl.	n. a.
57	Major	N. W. Corner	sandy loam	1515		med.	sl.
58	Major	S. W. of Fairview	sand	1635	545	sl.	n. a.
59	McClain	E. of Washington	loam	3250	665	sl.+	sl.+
60	McClain	E. of Washington*	loamloam	4340		v. sl.+	sl.+
61	McIntosh	S. of Onapa*	sandy loam	3550		v. sl.	n. a.
62	McIntosh	S. of Onapa	sandy loam	1175	375	med.	v. sl.
63	Murray	E. of Davis	sandy loam	2595		sl.+	v. sl.
64	Murray	S. of Sulphur	loam	2860		v. sl.	n. a.
65	Noble	S. W. of Morrison	fine sandy loam	1120	320	med.	sl.

67NobleS. of Perryclay loam2580620n. a.n. a.68NobleS. of Perryclay loam1880365n. a.n. a.69NowataW. of Nowatafine sandy loam1726445med.+med.70NowataS. of Nowatasilt loam2300620st.st.71NowataE. of Nowatasilt loam44801960n. a.n. a.72NowataE. of Watova*silt loam2760565med.+med.73NowataE. of Watovasilt loam2070495st.st.	
69NowataW. of Nowatafine sandy loam1726445med. +med.70NowataS. of Nowatasilt loam2300620st.st.st.71NowataE. of Nowatasilt loam44801960n. a.n. a.72NowataE. of Watova*silt loam2760565med.+med.73NowataE. of Watovasilt loam2070495st.st.	
70NowataS. of Nowatasilt loam2300620st.st.71NowataE. of Nowatasilt loam44801960n. a.n. a.72NowataE. of Watova*silt loam2760565med.+med.73NowataE. of Watova*silt loam2070495st.st.	
71NowataE. of Nowatasilt loam44801960n. a.n. a.72NowataE. of Watova*silt loam2760565med.+med.73NowataE. of Watova*silt loam2070495st.st.	
72NowataE. of Watova*silt loam2760565med.+med.73NowataE. of Watovasilt loam2070495st.st.	
73 Nowata E. of Watova silt loam 2070 495 st. st.	
74 Okfuskee Near Okemah silt loam 2915 1070 v. sl. n. a.	
75 Oklahoma S. of Edmond loam 1830 410 med. sl.	
76 Osage W. of Pawhuska loam 3190 320 med. sl.	
77 Osage S. of Fairfax silt loam 1130 1090 sl. n. a.	
78 Ottawa S.of Fairland loam 154) 590 v. sl sl.	
79 Ottawa S.of Fairland loam 196; 885 v. sl. v. sl.	
80 Pawnee W. of Pawnee loam 241; 590 med.+ sl.+	
81 Payne W. of Cushing fine sandy loam 1790 355 st. sl.+	
82 Payne E. of Perkins fine sand 1090 425 sl. n. a.	
83 Payne S. of Stillwater fine sandy loam 1640 603 sl.+ sl.	
84 Payne E. of Cottingham fine sandy loam 1305 415 st. sl.+	
85 Pittsburg W. of McAlester fine sandy loam 840 350 v. sl. n. a.	
86 Pittsburg Near McAlester fine sandy loam 410 220 med. st.	
87 Pushmataha N. of Albion fine sandy loam 1640 495 st.+ med.	
88 Pushmataha S. of Albion silt loam 1960 500 med. med.	
89 Pushmataha E. of Albion fine sandy loam 1640 525 sl. med.	
90 Pushmataha S. of Antlers sand 325 375 v. sl. n. a.	

THE ACADEMY OF SCIENCE

				Total Nitro	Tot. Phos	Aci	dity
No.	County	Location	Soil Texture	per 2,000,000	per 2,000,000	Truog	Comber
				lbs. of soil	lbs. of soil	test	test
91	Rogers	N. E .of Claremore	silt loam	2390	785	st.	st.
92	Rogers	W. of Oologah	silt loam	2215	430	st.	med.
93	Rogers	W. of Talala	silt loam	2720	565	med.+	med.
94	Rogers	E. of Claremore	silt loam	2980	809	med.+	med.
95	Rogers	Near Chelsea	silt loam	2200	535	med.+	med.
96	Rogers	N. of Foyil	silt loam	2565	650	sl. +	sl.
97	Stephens	S. of Comanche	loam	1315	435	v. sl.	v. sl.
98	Stephens	S. of Marlow	sand	1130	390	sl.+	v . sl.
99	Tulsa	E. of Tulsa	silt loam	1980	470	med.+	med.+
100	Wagoner	E. of Stone Bluff	silt loam	1960	475	med.+	st.
101	Wagoner	E. of Stone Bluff	fine sandy loan	n 1850	465	st.	sl.
192	Washington	S. E. of Bartlesville	loam	3690	650	sl.+	v. v. sl.
193	Washita	Near Rocky	loam	2070	645	n. a.	n. a .
104	Woods	S. E. of Waynoka	sand	785	375	v. sl.	n, a.
105	Woods	S .of Hopeton	sandy loam	3500	725	v. sl. ye	llow color
106	Woods	E. of Waynoka	sand	575	350	n. a.	n. a.
	Average (106	samples		2057.+	601.+		

*Virgin samples.

No.	Location or Plot No.	Fertilizer		otal Nitro. per	Total Ph	os. per Aci	dity
		Treatment	Texture	2 mil. lbs. soil	2 mil. lbs.	soil Truog	Comber
1	Lewis Field		loam	2800	585		
2	1300		sandy loam	1420	465	st.	st.
3	Cotton Burr St	udvnorth check	loam	1865	410	st.	sl.
4	Cotton Burr St	udysouth check	loam	1/735		med.+	med.
5	2300 N.		sandy loam		375	st.	st.
6	3100		loam	1640	435	sl.	n. a.
7	3200 W.			1530	435	med.+	sl.+
8	5100		silt loam	2130	535	st.	st.
9	5200 E.		loam	1725	505	med.+	med.
10	5200 W.	_	silt loam	2720	480	st.	st.
11	6201		silt loam	2660	470	st.	st.
12	6205	check	silt loam	1935	485	st.	st.
13	6209	check	silt loam	1950	450	st.	med.
		check	silt loam	1790	535	st.	st.
14	6216	check	silt loam	1710	570	st.	
15	6220	check	silt loam	1860	560	med.+	med.
16	6224	check	silt loam	1540	565	-	st.
17	6300	check	silt loam	1650	560	st.	št.
18	7201	check	loam	1670	540	st.	st.
19	7202	5T. CaSo ₂	loam			st.	med.
20	7203	2. 8T, CaO	loam	1810	560	n. a.	n. a.
		.,	ivaiii	1670	550	v . sl.	n. a.

Table II. Data on the total nitrogen ,total phosphorus an the acidity of soils collected from various parts of the Experiment Station Farm at Stillwater, Oklahoma.

21	7204	CaCo2+8T. Manure	loam	1865	515	v. sl.	n, a .
22	7205	CaO+8T. Manure	loam	1765	495	v. sl.	n , a .
23	7206	check	loam	1905	505	st.	med.
24	7207	3T. CaCo ₃	loam	1880	500	sl.	n. a.
25	7208	1.68T. CaO	loam	2045	425	n. a.	n, a.
26	7209	CaCo3+8T. Manure	laom	1990	445	sl.	n. a.
27	7210	CoO+8T. Manure	loam	2160	450	n. a.	n, a .
28	8200 N.W.		loam	1710	440	med.+	med.+
29	8200 S.		loam	2775	570	med.+	sl.
30	Field O	Manured Wheat	silt loam	2490	545	med.	sl.+
31	Field O	Subsufrace 12"-18"	clay loam	1735	320	sl.	sl.
32	Field O	Unmanured Wheat	silt loam	1905	430	st.	st.
33	Field O	Virgin Soil	silt loam	3205	540	sl.	v. sl.
34	8201	check	loam	1875	410	med.+	sl
35	8202	Subsoiled+7T. CaCo₃	loam	1905	430	sl.	n.a.
36	8203	Subsoiled+2T. CaO	loam	2010	440	sl.	n. a.
37	8204	Subsolied+20T. Manur	eloam	2490	525	med.+	sk+
38	8205	Subsoiled	loam	2185	425	st.	sl.+
39	8206	20T. Manure	loam	2310	530	med.	v. sl.
40	8207	check	loam	2130	435	st.	sl
1	Average (39 sa	mples)		2010	490	•••• •••••••••••••••••••••••••••••••••	