
International Journal of Aviation 

Research  

 

 
 

Volume 11 | Issue 01             Peer-Reviewed Article 
 

 
 

Drawing Conclusions about Reliability 

Without Measuring It 

 

David Trafimow    

New Mexico State University 
 

 

The importance of having reliable measures in science research is obvious and cannot be overestimated. 
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 It is a truism that reliability sets an upper limit on validity. The truism is a direct 

consequence of a classical measurement theory equation that describes the relation 

between reliability and validity (Spearman, 1904). Because of the truism, it is not 

surprising that many journals in the social sciences require authors to collect reliability 

data and report the reliabilities of their measures. And yet, it sometimes is not feasible for 

researchers to collect reliability data. For example, consider an aviation researcher whose 

main dependent measure is performance on a flight simulator in various contexts of 

interest. Insisting that participants undergo a second session to facilitate a reliability 

computation may dramatically increase the cost of the experiment, rendering it unfeasible 

to perform. The present goal is to provide aviation researchers with a procedure to draw 

limited conclusions about reliability, even in the absence of reliability data.  

  

Before continuing, it is important not to confuse the present use of the term 

“reliability,” with Cronbach’s alpha or its precursors, that also are commonly considered 

to index reliability. Cronbach’s alpha is influenced by the number of items and inter-item 

correlations, thereby causing many to term it “internal consistency,” rather than 



reliability.1 However, it also is well-known that items that load on different factors in a 

factor analysis nevertheless can be combined into a single set of items with high 

Cronbach’s alphas. Thus, it is not necessarily clear that Cronbach’s alpha even measures 

internal consistency, at least not in the sense that the items compose a single dimension. 

For present purposes, it is not necessary to delve into these complexities and issues 

pertaining to inter-item correlations will not be mentioned again. Instead, we can proceed 

directly to consider how classical measurement theory implies an ability to draw limited 

conclusions about reliability even without a direct reliability measure such as test-retest 

reliability. The first step in this direction involves a discussion of the classic attenuation 

and dis-attenuation equations, with implications. The implications are followed up 

subsequently with illustrative examples, extensions, and a discussion.  

 

Attenuation, Dis-Attenuation, True and Observed Correlations 

 

 Let us commence with the famous attenuation formula from classical 

measurement theory listed below as Equation 1.2 3 In Equation 1, 𝜌𝑇𝑋𝑇𝑌
 is the correlation 

between true scores, uncontaminated by random measurement error (the “true 

correlation” that the researcher really wants to know); 𝜌𝑋𝑌 is the correlation between 

observed scores (what the researcher obtains); and 𝜌𝑋𝑋′ and 𝜌𝑌𝑌′ are the reliabilities of 

measure X and measure Y, respectively.  

    𝜌𝑋𝑌 = 𝜌𝑇𝑋𝑇𝑌√𝜌𝑋𝑋′𝜌𝑌𝑌′    (1) 

 

Before continuing, it is worthwhile to pause for a moment to consider an 

implication of Equation 1 for the importance of reliability. If the reliabilities are perfect—

that is, equal to 1.00—there is no random measurement error, and the true and observed 

correlations equal each other. This is the ideal case. In contrast, if the reliabilities equal 

zero, the correlation that the researcher will observe also will equal zero, even if the true 

correlation is perfect. The closer the reliabilities of the variables are to 1.00, the better the 

observed correlations will reflect the true correlations. Hence, it is difficult to overstate 

the importance of reliability (Spearman, 1904; Gulliksen, 1987; Lord & Novick, 1968; 

Trafimow, 2016; Trafimow, 2018).  

  

Algebraic rearrangement of Equation 1 implies Equation 1*, which often is called 

the dis-attenuation formula. 

     𝜌𝑇𝑋𝑇𝑌
=

𝜌𝑋𝑌

√𝜌𝑋𝑋′𝜌𝑌𝑌′
    (1*) 

Equation 1* shows how to “correct” for unreliability to estimate what the true correlation 

between the variables would be in the absence of random measurement error. Equation 

 
1 There are precursors, such as split-half reliability, that also depend on inter-item correlations. The present 

comments pertaining to Cronbach’s alpha also apply to split-half reliability.  
2 Sometimes classical measurement theory is called classical test theory or classical true score theory.  
3 Equation 1 came originally from Spearman (1904); but was later expanded into the classical theory. 

Gulliksen (1987) and Lord and Novick (1968) provided well-cited reviews.  



1* is widely used in the social sciences, and many statistical packages use it in structural 

equation modeling because models based on estimates of true correlations are much more 

accurate than models based on observed correlations.  

  

For present purposes, it is convenient to consider the product of the reliabilities 

and to let PROD denote that product (𝑃𝑅𝑂𝐷 = 𝜌𝑋𝑋′𝜌𝑌𝑌′). To provide context, imagine 

that the two measures have the same reliability. Well, then, if PROD is 0.49, it implies 

that the individual reliabilities are 0.70. If PROD is 0.64, it implies that the individual 

reliabilities are at the 0.80 level; and if PROD is 0.81, it implies that the individual 

reliabilities are at the 0.90 level. Of course, if the reliabilities of the two measures differ, 

and one of them is lower than, say, 0.70; the other would have to be greater than 0.70 to 

balance out the lower number. In line with typical pronouncements of 0.70 as being a 

lower limit of acceptable reliability, let us arbitrarily designate 0.49 as the threshold for 

an “acceptable” value for PROD (0.70 ∙ 0.70 = 0.49). Rewriting Equation 1* with the 

substitution of PROD for the reliabilities of the two measures renders Equation 2. 

     𝜌𝑇𝑋𝑇𝑌
=

𝜌𝑋𝑌

√𝑃𝑅𝑂𝐷
    (2) 

 From here, we can perform algebra in easy steps to obtain an equation that renders 

PROD as a function of the correlation between true scores and the correlation between 

observed scores. First, let us multiply both sides of Equation 2 by √𝑃𝑅𝑂𝐷  and divide both 

sides by 𝜌𝑇𝑋𝑇𝑌
 to obtain Equation 3. 

     √𝑃𝑅𝑂𝐷 =
𝜌𝑋𝑌

𝜌𝑇𝑋𝑇𝑌

    (3) 

Squaring both sides of Equation 3 renders Equation 4. 

     𝑃𝑅𝑂𝐷 = (
𝜌𝑋𝑌

𝜌𝑇𝑋𝑇𝑌

)
2

    (4) 

Figure 1 

 Figure 1 illustrates values for 𝑃𝑅𝑂𝐷 along the vertical axis as a function of the 

observed correlation along the horizontal axis. Each curve represents different assumed 

values for the true correlation between the measures. The worst-case scenario for 

reliability is to assume that the true correlation maxes out at 1.00 (the solid curve in 

Figure 1), thereby resulting in the lowest possible values for 𝑃𝑅𝑂𝐷. Nevertheless, even 

this worst-case scenario does not have to be fatal for the researcher, for two reasons. 

First, and most convincingly, if the observed correlation is sufficiently large, even the 

worst-case scenario results in an acceptable result for PROD. Figure 1 shows this visually 

and instantiating values into Equation 4 provides a numerical demonstration. That is, if 

the observed correlation is 0.70, even assuming the true correlation is 1.00 gives the 

following: 𝑃𝑅𝑂𝐷 = (
0.70

1.00
)

2

= 0.49. And, of course, if the true correlation is assumed to 

be anything less than 1.00, 𝑃𝑅𝑂𝐷 exceeds 0.49. For instance, suppose we assume that the 

true correlation is 0.90 instead of maximizing it at 1.00. In that case, 𝑃𝑅𝑂𝐷 = (
0.70

0.90
)

2

=



0.60, a substantially more impressive value than the previous value of 0.49. In general, 

the smaller the value the researcher sets for the true correlation, the greater the value that 

will be obtained for PROD. The major point being made here is that even in the absence 

of reliability measures, researchers can draw conclusions about the lower limits of 

reliability. As we have just seen, an observed correlation of 0.70 implies that 𝑃𝑅𝑂𝐷 ≥
0.49, an acceptable value. Of course, if the observed correlation is less than 0.70, the 

minimum possible value for PROD is less than 0.49. Table 1 provides necessary 

observed correlations so that PROD meets or exceeds the 0.49 standard, based on a 

variety of true correlations.  

 

 
Figure 1. The product of the reliabilities (PROD) is expressed along the vertical axis as a 

function of the observed correlation expressed along the horizontal axis. The five curves 

illustrate the consequences for PROD of different values for the true correlation.  

 

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
ro

d
u

ct
 o

f 
R

el
ia

b
il

it
ie

s

Observed Correlation

True Correlation = .2

True Correlation = .4

True Correlation = .6

True Correlation = .8

True Correlation = 1



Table 1 

Lower limit of the observed correlation necessary to indicate an acceptable value for 

PROD (0.49) as a function of the assumed value for the true correlation coefficient.  

 

________________________________________________________________________ 

Assumed True Correlation  Necessary Observed Correlation for 𝑃𝑅𝑂𝐷 ≥ .49 

________________________________________________________________________ 

0.10     0.07 

0.20     0.14 

0.30     0.21 

0.40     0.28 

0.50     0.35 

0.60     0.42 

0.70     0.49 

0.80     0.56 

0.90     0.63 

1.00     0.70 

________________________________________________________________________ 

 The previous paragraph used an example where the observed correlation is 0.70, 

thereby implying that PROD meets or exceeds the acceptable value of 0.49 in the worst-

case reliability scenario assuming a perfect true correlation. But what if the observed 

correlation is less than 0.70? Is this fatal for the researcher? Not necessarily, as the four 

examples in the subsequent section show.  



 

Examples to Illustrate Relevant Arguments 

 To see the relevance of the forgoing mathematics for drawing scientific 

conclusions, consider the following examples. In each example, the sample obtained 

correlation 𝑟𝑋𝑌 is used to estimate the population observed correlation 𝜌𝑋𝑌.4 

 

Example 1 

 Suppose that an aviation researcher finds a correlation in fighter pilots between an 

index of various capabilities and performance on a simulator to be 0.70. The researcher 

wishes to use this as support that the abilities represented in the index importantly relate 

to fighter pilot performance. Unfortunately, the researcher did not have necessary funds 

available to include a second session for each participant; there was no way to calculate 

the reliabilities of the ability index or of fighter performance; and consequently, the 

researcher did not report them. A reviewer pounces on the lack of reliability data and 

recommends rejection: “How can we trust the data if the reliabilities of the measures are 

unknown, and might be extremely low?” The present mathematics suggests a response. 

That is, as we saw earlier, even if the true correlation is assumed to be 1.00, PROD would 

be at the acceptable level of .49, thereby indicating acceptable reliabilities of the 

measures. And this is the worst-case scenario for reliability. As Figure 1 shows, assuming 

more realistic values for the true correlation implies even better values for PROD. 

 

Example 2  

 Suppose that instead of a correlation of 0.70, the researcher in the foregoing 

example obtained a correlation of only 0.45? Is she sunk? Not necessarily. One question 

that would need to be asked is: What true correlation, if it were known, would be 

necessary for the result to be considered important enough for publication? Suppose, for 

example, that a true correlation of 0.40 would be considered the lower limit of the 

necessary effect size to meet the reviewer’s or editor’s threshold for importance. Well, 

then, it is obvious that with an obtained correlation coefficient of 0.45, the researcher has 

exceeded the threshold value of 0.40. Remembering an implication of Equation 4 that all 

unreliability can do is decrease correlations, it is obvious that the reliabilities of the 

measures were sufficiently large to allow the researcher to exceed the threshold, thereby 

addressing the criticism.  

  

Put more quantitatively, we can consider the worst-case scenario for the true 

correlation, which is that it equals the observed correlation. Remember that, in general, 

 
4 Sometimes statisticians place a “hat” on the estimate of the population observed correlation to indicate 

that it is a sample statistic used to estimate a population parameter, rather than the population parameter 

itself: �̂�𝑋𝑌. It seems more straightforward to simply use the standard symbol for the sample correlation: 𝑟𝑋𝑌. 

Of course, 𝑟𝑋𝑌 =  �̂�𝑋𝑌.    



true correlations exceed observed correlations because true correlations are not subject to 

random measurement error whereas observed correlations are. Thus, the true correlation 

cannot be a lower value than the observed correlation. Well, then, if the true correlation is 

0.45, Equation 3 implies the following: 𝑃𝑅𝑂𝐷 = (
0.45

0.45
)

2

= 1.00. In other words, the 

worst-case scenario for the true correlation implies the best-case scenario for the 

reliabilities of the measures, thereby negating the criticism that the reliabilities might be 

low. Alternatively, if the reviewer wishes to make the worst-case scenario for reliability, 

it is necessary to make the best-case scenario for the true correlation; namely, the true 

correlation would be set at 1.00. But note that although this renders PROD a poor number 

(𝑃𝑅𝑂𝐷 = (
0.45

1.00
)

2

= 0.20), which seems bad for the researcher at first glance because 

0.20 is less than our arbitrary value of 0.49; it gives away the ballgame by admitting that 

the true correlation is a perfect value of 1.00. Thus, either way, the intellectually honest 

reviewer would have to admit that the researcher wins.  

 

Example 3 

 Suppose that instead of an observed correlation of 0.70 or 0.45, the obtained value 

is only 0.29. Remaining with a threshold value of 0.40 for a true correlation to be 

considered sufficiently important for publication, the argument made in Example 2 will 

not work. Is the researcher sunk in this case? Here we have more of a judgment call. To 

see this, let us suppose that the true correlation really is exactly at the importance 

threshold of 0.40. In that case, Equation 3 implies the following, if we assume that the 

threshold value really is true: 𝑃𝑅𝑂𝐷 = (
0.29

0.40
)

2

= 0.53. Clearly, then, the reliabilities of 

the measures are acceptable under an assumption that the true correlation is 0.40, and if 

we assume lower values for the true correlation, the PROD score would be even better, as 

Figure 1 illustrates. Ironically, then, the intellectually honest reviewer would have to 

admit that a complaint about the reliability of the measures does not make sense in this 

context. This is not to say that the intellectually honest reviewer must recommend 

acceptance. The reviewer could suggest that, in fact, the measures are very reliable, 

though unmeasured; but that the foregoing mathematics force, under this assumption, that 

the true score fails to exceed the importance threshold of 0.40. To see the extreme case of 

this argument, consider that if PROD is set at 1.00 (perfect reliability), the observed 

correlation of 0.29 would imply that the true correlation also is 0.29, which would be well 

under the importance threshold of 0.40. Ironically, however, this reviewer criticism 

would be contrary to the criticism that the reliabilities might be low because it assumes 

high reliabilities.  

 

Example 4 

 Let us consider the same values as in Example 3; but change the nature of the 

argument. That is, instead of wishing to demonstrate that the ability index is importantly 

related to performance; suppose that the researcher wishes to show that the relationship is 



unimportant. In this case, if the measures are unreliable, the implication is that the true 

correlation would be above the importance threshold. For example, using Equation 2, 

suppose we assume that 𝑃𝑅𝑂𝐷 is .35. In that case, remaining with the obtained 

correlation coefficient of 0.29, the true correlation would be estimated to be as follows: 

𝜌𝑇𝑋𝑇𝑌
=

.29

√.35
= 0.49. This value is well above the importance threshold of 0.40. Thus, 

Example 4 provides a valuable contrast to Examples 1-3. That is, in Examples 1-3, where 

the goal was to show a strong relationship between the two variables, arguments about 

unreliability merely strengthen that the true correlation must be strong, if the observed 

correlation coefficient is a reasonable but not necessarily impressive value. Or 

alternatively, arguments about low true correlations merely strengthen that the 

reliabilities of the variables must be strong, again depending on a reasonable value for the 

observed correlation. In contrast, Example 4 illustrates that if the researcher wishes to 

establish that two measures are not very related, it is entirely reasonable for a critical 

reviewer to demand evidence that the measures have high reliability. In Example 4, 

unlike Examples 1-3, the omission of reliability measures is devastating.  

 

Extension to Experimental Research 

 It is not difficult to extend the foregoing correlational approach to true 

experiments with experimental and control conditions. Consider that the typical effect 

size measure in experiments is Cohen’s d.5 Once the researcher has obtained Cohen’s d, it 

can be converted into a correlation coefficient using Equation 5 below (Rosenthal & 

Rosnow, 2008).  

     𝑟𝑋𝑌 = √
𝑑2

𝑑2+4
     (5) 

In turn, once Equation 5 has been used to convert Cohen’s d into an observed 

correlation coefficient, the procedure described earlier applies directly. For example, 

suppose that the experimenter obtains a value of 0.90 for Cohen’s d; Equation 5 implies 

that the observed correlation between the independent variable and the dependent 

variable is as follows: 𝑟𝑋𝑌 = √
0.92

0.92+4
= 0.41. This value can be instantiated into Equation 

4. 

 

 With the issue of generalization to experimental paradigms addressed by Equation 

5, there remains a conceptual asymmetry to be discussed. Imagine that Researcher A 

obtains a large effect size whereas Researcher B obtains a very small effect size. All else 

being equal, should Researcher A be given preference over Researcher B in the 

publication process? There has been considerable discussion recently about precisely this 

issue; that is, whether the size of the obtained effect should be an important consideration 

in reviewer recommendations and editorial decisions (e.g., Grice, 2017; Hyman, 2017; 

 
5 Cohen’s d is the difference in means divided by the pooled standard deviation: 𝑑 =

𝑀1−𝑀2

𝜎𝑝
. Most statistical 

packages will compute it automatically or with an extra click of the mouse.  



Kline, 2017; Locascio, 2017a, 2017b; Marks, 2017). Although there is insufficient space 

here to discuss the issue properly, the foregoing examples can be argued to militate on the 

side of those who believe that the obtained effect size should matter in editorial decisions.  

  

To understand why, let us return to Researcher A who obtains a large effect size. 

Equation 4 proves that this researcher’s measures must have been reliable—though there 

is no way to know their exact reliability—and so lack of reliability cannot reasonably be 

used as an argument against publication. In contrast, consider Researcher B, who 

obtained a small effect size. In this case, there is no way to counter the accusation that the 

measures were unreliable, thereby causing the small obtained effect. Clearly, all else 

being equal, Researcher A is in a much better position than Researcher B with respect to 

the reliability issue. 

  

Of course, as was suggested earlier, the effect size also may matter from the point 

of view of application. For example, if a new pilot training procedure results in a large 

improvement over the old one, and the finding replicates, that would provide a strong 

reason for converting to the new procedure. In contrast, if there is little difference 

between the two conditions, the implications for applications are less clear.  

 

Conclusion 

 In conclusion, the lack of feasibility of reliability measures in many aviation 

research paradigms need not be a fatal flaw. We have seen that Equation 4 (augmented by 

Equation 5 for experimental designs) provides a way for researchers to come to limited 

conclusions about reliability, even when reliability cannot be directly assessed. The larger 

the obtained value for the sample correlation or for Cohen’s d, the larger the lower limit 

for the reliabilities of the measures. Furthermore, even if the obtained effect size is 

moderate, rather than large; if expert knowledge in the substantive area implies that the 

true effect size likely is moderate, Examples 2 and 3 suggest that a reasonable case may 

nevertheless be made that the measures are sufficiently reliable. The procedure 

recommended here is not a panacea, as Example 4 illustrates; but it does provide 

researchers with an ability to come to limited conclusions about reliability, in the absence 

of reliability data. Depending on the obtained effect size as well as expert knowledge of 

the substantive domain of interest, the proposed procedure may help justify research that 

otherwise would be more difficult to justify.  
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