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Researchers feel they have the green light to ignore low levels of skewness because the central limit theorem 

indicates that such levels do not seriously compromise the validity of significance tests (e.g., Rouaud, 2013). And 

yet, significance testing is not the only issue, and the present focus is on two other issues where the central limit 

theorem does not come to the rescue. First, there is the question of how well the sample location statistic estimates 

the population location parameter. Surprisingly, skewness increases the precision of the estimation, and this increase 

in precision is impressive even with very low levels of skewness. Thus, by ignoring low levels of skewness, 

researchers are throwing away an important advantage. Second, experimental manipulations can cause differences in 

means across conditions, when there is no difference in locations across conditions; so the experiment seems to have 

worked based on means, when it really has not worked based on locations. Thus, moderate effect sizes can be 

caused by slight changes in skewness. For both reasons, it is recommended that researchers always attend to 

skewness, even when it is slight; and consider locations whenever they consider means.   
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            Researchers who are serious about the proper interpretation of data are consistent about 

advising researchers to carefully peruse their data at descriptive levels (Tukey, 1977), including 

using visual displays (Valentine, Aloe, & Lau, 2015). An advantage of careful data perusal 

pertaining to skewness—the present issue of concern—is that researchers can assess whether the 

data are skewed, and by how much. There are several rules of thumb about acceptable levels of 

skewness, such as that skewness should be between -1 and 1, or between -.8 and .8.1 Surely, if 

the absolute magnitude of the skewness is sufficiently small, such as less than 1 or .8, it is small 

enough to be ignored. If the data are close to normal, and the calculated skewness is sufficiently 

slight, the central limit theorem justifies that the researcher can treat the data as normally 

distributed, without negative implications for the validity of typical parametric null hypothesis 

significance tests. 

 

            Our main goal is to present arguments that counter the foregoing conclusion. Although it 

is granted that slight skewness usually is not an important problem for the validity of typical 

parametric null hypothesis significance tests, significance testing is not the only issue.2 Our goal 

is to demonstrate that low levels of skewness have important effects on sampling precision and 

data interpretation. A consequence is that, contrary to current data analysis trends, researchers 

almost always should worry about skewness. There will be two main arguments. First, skewness 

increases precision, and much of the increase occurs at absolute levels much less than 1, or even 

.8 (Trafimow, Wang, & Wang, 2019). By ignoring skewness, and depending on sample means 

instead of sample locations, researchers are depriving themselves of a great deal of precision that 

they otherwise would gain. According to this argument, skewness is desirable—a friend rather 

than an enemy—and should be embraced rather than seen as a problem to be rectified by data 

transformation. Second, by ignoring skewness—even slight skewness—the differences in means 

that provide the main tests of hypotheses in typical experimental research, are subject to an 

alternative explanation that can be eliminated simply by considering locations too, as opposed to 

only considering means (Trafimow, Wang, & Wang, 2018). But a prerequisite for considering 

locations is that researchers must consider skewness, even slight skewness.  

 

Skew-Normal Distributions 

 

            Both arguments to be presented, about precision and about an alternative explanation for 

differences between means, depend on a minimal level of understanding of the family of skew-

normal distributions. The present section presents that preparatory information (see Azzalini, 

2014 for a comprehensive review of skew-normal distributions). Subsequently, there is the 

presentation of arguments about precision and about an alternative explanation for differences 

between means.  

 

 Let us commence with the family of normal distributions that constitute a small subset of 

the much larger family of skew-normal distributions. Normal distributions have two parameters: 

these are the mean 𝜇 and the standard deviation 𝜎. In contrast, skew-normal distributions have 

                                                 
1 There are many such recommendations (e.g., see Bulmer, 1979 for a classic textbook).  
2  Null hypothesis significance testing has recently come under strong attack (see Briggs, 2016; Hubbard, 2016; 

Ziliak & McCloskey, 2016 for recent reviews), has been banned from Basic and Applied Social Psychology 

(Trafimow & Marks, 2015), and was widely criticized at the American Statistical Association Symposium on 

Statistical Inference (2017). We strongly disfavor its use, though this argument is not necessary for present purposes. 



three parameters. These are the location 𝜉, scale 𝜔, and skewness or shape 𝜆. When there is no 

skewness, and the distribution is normal, the location and mean are the same (𝜉 = 𝜇), and the 

scale and standard deviation are the same (𝜔 = 𝜎). But when the distribution is skewed (𝜆 ≠ 0), 

the location is different from the mean (𝜉 ≠ 𝜇), and the scale is different from the standard 

deviation (𝜔 ≠ 𝜎). For skew-normal distributions, because locations and scales are parameters 

and means and scales are not; locations are more informative than means, and scales are more 

informative than the standard deviations. Azzalani (2014) presents the probability density 

function and cumulative density function of skew-normal distributions, but this level of 

understanding is not necessary to comprehend the arguments to be made here.  

 

The Precision Argument 

 

 The precision argument derives from a consideration of locations and scales in the 

context of work by Trafimow concerning a priori thinking (2017; also see Trafimow & 

MacDonald, 2017; Trafimow et al., 2019). Under the assumptions of random sampling from a 

normal distribution, Trafimow (2017) provided an accessible proof of Equation 1 below. The 

idea is to determine the sample size 𝑛 for any desired level of precision 𝑓, expressed as a fraction 

of a standard deviation of the sample mean from the population mean, and the z-score 𝑍𝐶  

corresponding to the desired level of confidence of having the sample mean be within 𝑓 of the 

population mean. That is,  

𝑛 = (
𝑍𝐶

𝑓
)

2

.     (1) 

 

 For example, suppose that a researcher tests a new type of aviation training and 

wishes to have a 95% probability of obtaining a sample mean that is within .1 of a standard 

deviation of the population mean. The sample size needed to meet these prescriptions is as 

follows: 𝑛 = (
1.96

.1
)

2

= 384.16. Thus, rounding to the nearest upper whole number, the 

researcher needs to collect 385 participants to have a 95% probability of obtaining a sample 

mean within one tenth of a standard deviation of the corresponding population mean. 

Remembering that under the normal distribution, the location equals the mean and the scale 

equals the standard deviation, if the goal were to be 95% confident that the sample location is 

within .1 of a scale unit of the corresponding population location, the researcher again would 

need 385 participants to meet specifications.  

 

 In contrast, suppose the shape parameter is .8, or 1. What difference does this make for 

the required number of participants to meet the same specifications? The complex details of how 

to make the calculations are described by Trafimow et al. (2019).3 What matters at present is that 

slight skewness renders dramatic change regarding the sample size necessary to meet 

specifications. To see this, suppose the researcher wishes to be 95% confident of being within .1 

of a scale unit of the population location. When the shape parameter is .8, the sample size needed 

to meet specifications shrinks to 150. Moving to a shape parameter of 1, the sample size needed 

                                                 
3 Unfortunately, although there is a simple closed form expression for the normal case (e.g., Equation 1), there is no 

closed form expression for the skew-normal case. Thus, solutions must be obtained numerically via computer. 

Trafimow et al. (2019) provide the mathematics and computer programming.  



to meet specifications shrinks to 146. These are dramatic reductions from the necessary sample 

size of 385 when there is normality! 

 

  The reader might be puzzled about why seemingly trivial skews matter so much. The 

mathematical answer, and how to perform the calculations, is complex (see Trafimow et al., 

2019 for details). But the explanation can be rendered qualitatively. Specifically, as skewness 

increases, the bulk of the distribution becomes narrower and taller. Because most data points 

randomly sampled from a distribution are from the bulk rather than the tail, the narrower the 

bulk, the greater the precision. Thus, it takes fewer data points to provide a good estimate of the 

population location.  

 

 Given pronouncements about levels of skewness that safely can be ignored, the surprising 

fact uncovered by a concern with precision is that most of the difference that skewness makes 

occurs at very low levels. To clarify, consider Figure 1, where the necessary sample size to meet 

specifications is represented along the vertical axis, as a function of skew along the horizontal 

axis. Each of the curves represents a different level of precision (𝑓 = .1, .2, .3, or .4), using 95% 

as the confidence level. In all cases, the curves decrease monotonically, and reach asymptote 

quickly. As a dramatic example, even moving from a shape parameter of 0 to an extremely small 

skew when the shape parameter is .1, when  𝑓 = .1, reduces the necessary sample size from 385 

to 227. Clearly, from the point of view of precision, even an extremely small degree of 

skewness—perhaps too small to see easily in a histogram—matters. 

  



 

 
Figure 1. The sample size required to meet specifications for 95% confidence and precision 

levels of f = .1, .2, .3, or .4; as a function of the shape parameter.  

 

An Alternative Explanation for Differences Between Means 

 

To understand a potential alternative explanation for a difference in means, consider the 

relation between location and mean, and between scale and standard deviation (e.g., Trafimow, 

Wang, & Wang, 2018). These are presented below in Equation 2.  

The mean and variance are   

   E(𝑋) = 𝜉 + √
2

𝜋
𝛿𝜔   and    V(𝑋) = 𝜔2(1 −

2

𝜋
𝛿2),   (2) 

 

where 𝛿 =
𝜆

√1+𝜆2
.4 An implication of Equation 2 is that as 𝜆 increases, so that 𝛿 increases too, the 

mean is increasingly displaced from the location, in the direction of the skewness; and the 

standard deviation decreases relative to the scale.  

 

 Imagine a typical aviation training experiment where a researcher randomly assigns 

participants to a new training procedure or the old one; these are the experimental and control 

                                                 
4 Delta 𝛿 is commonly used for at least two reasons. First, it shortens equations such as Equation 2. Second, it has 

the nice property of ranging from 0 to 1 as a function of the shape parameter.  
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conditions, respectively. Let us suppose that mean performance (by whatever measure) is 

significantly higher in the experimental condition than in the control condition; how much does 

this finding support the hypothesis that the new training procedure is superior to the old one? 

Further, to avoid issues pertaining to statistical significance, let us imagine full access to 

population parameters, so all values used for illustration in this section pertain to population 

parameters.  

 

 The degree of support the finding provides for the hypothesis depends, in large part, on 

alternative explanations. And there is one alternative explanation that is generally a potential 

problem. Suppose that the new training procedure causes the distribution to become more 

positively skewed relative to the control condition, without influencing the location or scale. 

Well, then, increasing skewness will (a) cause the mean to increase and (b) cause the standard 

deviation to decrease. Thus, although the lack of change in location, in our example, clearly 

indicates that the experiment did not work, the changes in mean and standard deviation will 

nevertheless render the appearance that it did work.  

 

To see this, consider a specific example where the distribution is normal in the control 

condition and skew-normal in the experimental condition, with the shape parameter equal to .8, 

which, by conventional thinking, indicates minimal skewness and safely can be ignored. Let us 

also assume that the location is 10 in both conditions, and the scale is 4 in both conditions. In the 

control condition, where the location and mean are the same, and the scale and standard 

deviation are the same, it should be clear that the mean is 10 and the standard deviation is 4. But 

matters change for the experimental condition, again keeping the location at 10 and scale at 4. 

The bullet listed calculations make use of Equation 2 to exemplify the changes in mean and 

standard deviation caused by inducing the allegedly minimal degree of skewness in the 

experimental condition.  

 

 𝛿 =
𝜆

√1+𝜆2
=

.8

√1+.82
= .6247; 

 E(𝑋) = 𝜉 + √
2

𝜋
𝛿𝜔 = 10 + (√

2

𝜋
∙. 6247 ∙ 4) = 11.5908; 

 V(𝑋) = 𝜔2 (1 −
2

𝜋
𝛿2) = 42 (1 −

2

𝜋
∙. 62472) = 12.0250,  

o Standard deviation = 3.4677. 

 

Thus, although the fact that the locations are the same indicates that the experiment did 

not work, there is a moderate difference in means, from 10 in the control condition to 11.5908 in 

the experimental condition. Or in terms of the effect size, pooling the standard deviations in the 

two conditions, as is standard practice for obtaining the denominator of Cohen’s D 

(Cohen′s 𝐷 =
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑚𝑒𝑎𝑛𝑠

𝑃𝑜𝑜𝑙𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
), the effect size is .4260, which most reviewers and 

editors would consider sufficiently strong to justify publication. Remember, though, that this is 

the effect size using the difference in means in the numerator of Cohen’s D (Cohen, 1988). If the 

difference in locations is used, the effect size appropriately is 0.  

 

 And matters become worse if one uses 1, rather than .8, as the shape parameter in the 

experimental condition, again which, by conventional thinking, is slight and can be ignored: 



 𝛿 =
𝜆

√1+𝜆2
=

1

√1+12
= .7071; 

 E(𝑋) = 𝜉 + √
2

𝜋
𝛿𝜔 = 10 + (√

2

𝜋
∙ .7071 ∙ 4) = 11.8006; 

 V(𝑋) = 𝜔2 (1 −
2

𝜋
𝛿2) = 42 (1 −

2

𝜋
∙ .70712) = 10.9070,  

o Standard deviation = 3.3026. 

 

The difference in means is from 10 in the control condition to 11.8006 in the experimental 

condition. Or in terms of the effect size, Cohen’s D is .4931.  

 

 The example effect sizes when the shape parameter in the experimental condition 

increases to .8 or 1.0 may seem surprisingly large in the context of no differences in locations or 

scales and beg some explanation. It is important to understand that two factors contribute to 

effect sizes when there is no change in location or scale but there is a change in shape. First, of 

course, the mean moves in the direction of the skew. This is illustrated in Figure 2. Second, as 

the shape parameter increases, the standard deviation decreases, as is illustrated in Figure 3. 

Thus, the numerator of Cohen’s D increases; and the denominator decreases, due to pooling the 

decreased standard deviation in the experimental condition with the standard deviation in the 

control condition. As Figure 4 illustrates, both effects combine to render moderate values for 

Cohen’s D. Note that the seeming effects demonstrated in Figure 2, Figure 3, and especially 

Figure 4, occur at allegedly unimportant levels of shape parameters that are less than or equal to 

1.   

  



 
Figure 2. The mean of the experimental condition as a function of the shape or skewness 

parameter, with location = 10 and scale = 4. 
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Figure 3. The standard deviation of the experimental condition as a function of the shape or 

skewness parameter, with location = 10 and scale = 4.  

  

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

St
an

d
ar

d
 D

ev
ia

ti
o

n

Shape Parameter



Figure 4. The effect size, expressed as Cohen’s D, as a function of the shape or skewness 

parameter, with location = 10 and scale = 4 for both the experimental and control conditions.  
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Conclusion 

 

 Despite the received wisdom that small deviations from normality, such as shape 

parameters with an absolute value of 1 or .8, safely can be ignored, two important factors 

contradict the received wisdom. First, skewness renders fewer participants necessary for sample 

locations to be good approximations of population locations. Or if the sample size remains 

constant, skewness increases the precision with which the sample location estimates the 

population location. Moreover, the effect is a large one, even at allegedly slight or even 

miniscule levels of skewness. Second, slight changes in skewness, from the control condition to 

the experimental condition, can cause moderate differences in means and effect sizes, even when 

there is no difference whatsoever in the locations and scales of the two distributions. In general, 

then, it is a poor idea to ignore skewness; to fail to calculate sample location, scale, and skewness 

statistics; and to fail to compare locations across conditions, as well as means.  

 Nor are the calculations difficult. At the population level, Equation 2 shows how to 

obtain means and standard deviation from locations, scales, and shapes. After suitable algebraic 

manipulation, it is easy to write equations that allow the calculation of location and scale 

parameters from means, standard deviations and shapes, such as Equation 3.  

𝜉 = √
2

𝜋
𝛿𝜔 − 𝜇            and            𝜔2 =

𝜎2

(1−
2

𝜋
𝛿2)

,   (3) 

where 𝛿 =
𝜆

√1+𝜆2
. 

 

At the sample level, it is necessary to use estimates. Fortunately, most computer 

programs will calculate a sample mean �̅�, standard deviation 𝑠, and skewness 𝛾1 for each 

condition. In turn, these can be used to estimate population shape, location, and scale parameters 

for each condition, using the method of moments. There are alternative methods not covered here 

(Azzalani & Capitanio, 1999; Zhu, Ma, Wang, & Teetranont, 2017).  

 

First, it is useful to estimate the shape parameter, which necessitates using Equation 4 to 

obtain an estimate of the absolute value of delta |𝛿|: 

   |𝛿| = √
𝜋

2

�̂�1

2
3

�̂�1

2
3+(

(4−𝜋)

2
)

2
3

,      (4) 

where the sign of 𝛿 is the same as the sign of 𝛾1.  

   

In turn, it is easy to obtain an estimate of the shape or skewness parameter �̂� using 

Equation 5: 

    �̂� =
�̂�

√1−�̂�2
.      (5)  

Finally, the estimate of delta can be used to estimate the location and scale parameters. 

Equation 6 below rewrites Equation 3, but with estimators obtained from samples, rather than 

using population parameters.  

𝜉 = √
2

𝜋
𝛿�̂� − �̅�            and            �̂�2 =

𝑠2

(1−
2

𝜋
�̂�2)

.   (6) 

 



 To recapitulate, there is no disagreement that a low level of skewness often is 

unimportant from the point of view of performing typical null hypothesis significance tests; but 

the present goal is to emphasize that this is not the only issue. The figures and examples illustrate 

that an allegedly unimportant level of skewness nevertheless has important effects on both 

precision and on effect sizes. Our main goals were to educate aviation researchers to appreciate 

the importance of these points and to encourage careful consideration of skewness in their own 

research. Embracing skewness by computing location statistics, rather than settling only for 

means, will increase precision. And because precision is intimately connected to replicability, 

increasing precision also should increase replicability (Trafimow, 2018). In addition, computing 

location statistics can be an invaluable aid for evaluating whether experimental manipulations 

really do shift distributions, whether they influence distribution shapes, both, or neither.  

 

 Moreover, it is easy to estimate the parameters of skew-normal distributions; such as 

location, scale, and skewness; given that most computer programs provide statistics pertaining to 

sample means, sample standard deviations and sample skewness. Because most distributions are 

skewed (Blanca, Arnau, López-Montiel, Bono, & Bendayan, 2013; Ho & Yu, 2015; Micceri, 

1989); and even slight levels of skewness have important consequences for precision and effect 

sizes; it is urged that the estimation of location, scale, and skewness parameters become 

obligatory practices in aviation research.   
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