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To scientifically and effectively predict fatigue risk among air traffic controllers, the authors developed a dynamic 
evaluation model tailored to the routine activities of traffic controllers. By considering biorhythms and workload, 
we identified causes of fatigue and quantitatively analyzed their impact. Our study involved 24-hour sleep 
deprivation experiments, collecting electroencephalogram (EEG) data to track fatigue over time. Expert scoring 
determined workload coefficients for different periods and positions. Using experimental data, we established and 
validated a mathematical model for dynamic fatigue risk assessment during various work periods. Results align 
with controllers' actual fatigue levels and self-assessment scores, indicating the proposed method's effectiveness in 
early fatigue detection and ensuring aviation safety. 
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Introduction 
 

As air traffic continues to surge, so does the strain on air traffic management, with human 
factors emerging as a pivotal concern for civil aviation safety. The rotating day-night shift system 
and relentless mental and physical workload have spotlighted controller fatigue as a critical issue 
in human factors research. The International Civil Aviation Organization (ICAO) defines fatigue 
as a physiological condition in which the ability to perform mental or physical activities is reduced 
due to lack of sleep, prolonged periods of wakefulness, or excessive physical activity (ICAO, 
2016). In two recent studies conducted by Lu and his research team, fatigue emerged as a 
significant causal factor contributing to undesirable events in aviation, especially amidst the 
challenges posed by the unexpected pandemic (Lu et al., 2023; Lu et al., 2024). Fatigue 
compromises attention, alertness, judgment, and decision-making, culminating in cognitive and 
operational errors. According to the U.S. Federal Aviation Administration (FAA), approximately 
21% of annual aviation accidents stem from controller fatigue (ICAO, 2016). Hence, establishing 
a scientifically robust and effective method for predicting controller fatigue and implementing 
corresponding preventive measures holds paramount importance in safeguarding aviation 
operations. 

 
Present studies on assessing controller fatigue methods classify into subjective and 

objective evaluation techniques. Subjective methods involve fatigue scales completed by subjects 
to gauge their fatigue status and severity, such as the Multidimensional Fatigue Inventory 
developed by Professor Smets at the University of Amsterdam in the Netherlands (Smets et al., 
1995) and the MFI-16 Multidimensional Fatigue Self-Rating Scale (Sun et al., 2016). The 
objective evaluation method employs a range of instruments and techniques to gather 
physiological, biochemical, behavioral, or human factors engineering indices associated with 
fatigue, forming a comprehensive fatigue evaluation system. Commonly utilized approaches 
involve collecting subjects' electroencephalogram (EEG), electrocardiograph (ECG), 
Electrodermal, and other indicators to delineate fatigue. Foreign scholars Lal and Craig (2001) 
believe that EEG signal is one of the most reasonable indicators for testing fatigue. Chen and Wang 
(2017) collected the EEG data of controllers and used EEG indicators to compare the fatigue 
differences of controllers under different shift systems. Some scholars also analyze fatigue by 
monitoring subjects' blinking, yawning, and other behaviors. Chen (2015) proposed controller 
fatigue status monitoring based on eye movement data. The fatigue state of controllers was 
evaluated by collecting the eye tracking data and analyzing the fixation state, pupil changes, blink 
time, and other indicators combined with PERCLOS (Chen, 2015). Based on facial recognition 
technology, Sun et al. (2014) used the OpenCV development platform to identify controller fatigue 
status through the eyelid opening and closing rate and mouth opening frequency. 

 
While the aforementioned method accurately gauges controller fatigue, its implementation 

entails a complex measurement process, prolonged testing duration, and requires installing 
cameras in control positions, potentially amplifying the psychological burden on controllers. 
Moreover, fatigue is subject to biological rhythms, work content, and dynamic time variability. 
Consequently, existing research solely evaluates personnel's current fatigue status, lacking 
predictive capabilities for preemptive fatigue risk assessment and proactive control measures in 
response to dynamic fatigue fluctuations (Li et al., 2017).  

 



Fan et al.: Enhancing Insight into Air Traffic Controller Fatigue: A Dynamic Quantitative Examination through 
Biological Rhythms 

 
A publication of the University Aviation Association, © 2024 3 

Controller fatigue primarily stems from endogenous biological rhythms and exogenous 
workload and pressure. Biological rhythms, such as the 24-hour circadian rhythm, dictate inherent 
patterns in physiological states characterized by fluctuations between high and low periods. Shift 
workers often find themselves operating during these low periods, such as late afternoon and 
midnight, exacerbating fatigue. Consequently, fatigue prediction models for controllers must 
comprehensively account for the influence of biological rhythms. Many scholars in relevant 
research domains have thus developed mathematical models for fatigue prediction grounded in 
human sleep homeostasis, circadian rhythm, and working hours. For example, the Three Process 
Model of Alertness (TPMA) proposed by Akerstedt and Folkard (2004) calculates the alertness 
value through the start and end time of work/sleep; in 2001, the Sleep Research Center of the 
University of South Australia proposed the Fatigue Audit Inter Dyne (FAID) model, which 
calculated the output fatigue value through duty/rest time (Roach et al., 2004). Rosa (2004) 
proposed the CAS model, which calculated alertness through circadian rhythm and sleep 
homeostasis. Based on the above studies, Li (2019) established a fatigue prediction model aiming 
at the work characteristics of subway attendants, considering factors such as the time domain of 
personnel operation, working hours, work breaks, and shift patterns. However, all parameters in 
the model were determined by subjective methods, lacking objective accuracy. Wu (2018) 
collected PVT reaction time data of subjects through a sleep deprivation experiment, established 
the change function of quantified alertness value with wake time, and combined it with the 
controller's workload to calculate the fatigue prediction curve. Workload denotes the volume of 
work the human body can handle within a given timeframe. A higher workload accelerates fatigue 
accumulation, resulting in an earlier onset of fatigue (Wu, 2018). Arico et al. (2015) analyzed the 
EEG signals of twelve (12) school control students, established the mental load coefficient of 
control work, and proposed a workload model based on EEG. Shou and Lei (2013) found that the 
frontal theta wave of controllers changes sensitively and significantly with the working load and 
working time. 

 
The aforementioned research acknowledges the influence of sleep and circadian rhythm on 

fatigue and establishes a quantitative fatigue prediction model through experimentation and 
mathematical analysis, providing a basis for the present study. Nonetheless, existing studies on 
dynamic quantification of fatigue often overlook the specific work characteristics of air traffic 
controllers. Thus, this paper aims to address these limitations by introducing enhancements and 
additions derived from a comprehensive examination of current research gaps: 

 
1) Considering both endogenous biological rhythm and exogenous workload, this study 

identified factors influencing controller fatigue: circadian rhythm, work content, and work 
hours. Through experimentation and mathematical calculations, a quantitative fatigue 
prediction model was subsequently developed. 

 
2) Perform a controlled simulator test under conditions of sleep deprivation. Collect EEG 

signals from the subjects during the test and process the data to derive EEG fatigue values. 
Utilize regression analysis to determine the changes in the fatigue value curve over the 
course of 24 hours with respect to awakening time. 

3) Utilize the expert scoring method to ascertain the workload coefficient for each control seat 
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and working period. Compute the controller's workload implementation curve and 
determine the parameters of the fatigue quantitative assessment model through 
mathematical calculations. 

 
Experimental Design 

 
Experimental Materials and Contents 

 
The experiment utilized the MFI-16 fatigue scale, a unique adaptation of the 

Multidimensional Fatigue Scale (MFI-20) developed by the University of Amsterdam in the 
Netherlands. This revised version, developed by the Safety Science Institute of the Civil 
Aviation University of China, is specifically tailored to the professional characteristics of 
controllers. The scale, comprising 16 items, yields a total score ranging from 16 to 80 points, and 
a higher score indicates a greater degree of fatigue (Lal. & Craig, 2001). The scale score is 
recorded and can be compared with subjective scale scores to validate the effectiveness of 
physiological index data in representing fatigue. 

 
The equipment used to collect physiological data is the Manglod-10 multi-channel 

physiological instrument produced by Mind Media. This equipment is used for recording human 
physiological signals and consists of a multi-channel analog signal collector, a signal processing 
unit, and computer software. During the experiment, physiological sensors were installed on 
various parts of the subjects' bodies to capture up to 10 signals, including electrocardiogram 
(ECG), electroencephalogram (EEG), electromyogram (EMG), and electrodermal response 
(EDA). These signals were then collected by a multichannel analog signal collector and 
transmitted to the signal processing unit. Following amplification, filtering, and interference 
removal, the data was sent to the computer for further processing and analysis. 
 
Experimental Process and Content 
 

A total of 12 air traffic controller students from the Civil Aviation University of China 
were selected before and after the experiment. They were all male, with normal naked or 
corrected vision, no smoking or drinking, self-reported no sleep disorders, and no history of 
neurological or psychiatric medication or medical history. All subjects studied radar control-
related courses and passed the assessment of subject scores. All subjects were informed in 
advance of the experiment's content, method, and purpose and participated in the experiment 
voluntarily. 

 
In this experiment, the subjects were deprived of sleep for 24 hours under the supervision 

of the experimenter, who ensured that the subjects did not sleep throughout the study. They were 
regularly tested. In terms of good health, an adult is recommended to sleep for seven to eight 
hours per night (Healthy China Action Promotion Committee, 2019; Napoli, 2023). Therefore, 
all subjects were asked to sign a pledge to get eight hours of sleep the night before and set an 
alarm for 7 a.m. on the day of the experiment to ensure uniform sleep conditions (no analysis of 
the subject’s sleep status was involved) before the test. Testing commenced at 9 a.m. and 
occurred every two hours until 7 a.m. the following day, totaling 12 tests per individual, as 
outlined in Table 1. During the intervals between tests, under the supervision of the researchers, 
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the participants refrained from engaging in strenuous activities that would deplete physical 
energy and were prohibited from consuming stimulating beverages like coffee or strong tea. 
Additionally, the staff provided the diet during the experiment to ensure that meals did not affect 
the participants' state. 
 
Table 1  
Test Schedule 
 

 
 

The test contents include the approach radar simulator test and the MFI-16 fatigue scale 
filling (PVT test). Before conducting the radar simulator test, the subjects first filled out the 
fatigue scale to record their subjective fatigue value at the current moment. Each simulator test 
lasted 30 minutes. 

 
The whole test process's EEG data were recorded. The multi-channel physiological 

instrument was connected to the controller's left forehead, wrist, ear, elbow joint inside, index 
finger, and middle finger through electrodes. The EEG unipolar lead method was used to record 
the EEG signals of the controller's left forehead during the simulation. Figure 1 shows the 
scenario during the test. 
 
Figure 1  
Experimental Scene Diagram 
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Workload Evaluation Indicators 
 

Understanding the intricate relationship between workload and fatigue among air traffic 
controllers is crucial. The time between waking and sleeping represents a period of energy 
expenditure, where fatigue accumulates as energy is depleted. However, workload is also a key 
factor in this equation (Wu, 2018).  

 
Given the inherent variations in workload and specific tasks, the accumulation of fatigue 

among controllers on duty varies significantly across different types of control, positions, and 
periods. These control types include airport control, approach control, and area control. Airport 
control oversees aircraft movements within the airport's jurisdiction, including taxiing, take-off, 
landing, and related maneuvers. Approach control manages aircraft approaches and departures. 
Area control provides air traffic control services for aircraft within a designated airspace. Control 
positions typically comprise director, coordinator, and supervisor roles. The director organizes 
air command and deployment, the coordinator facilitates coordination and handover, monitors 
flight dynamics, and oversees the director's commands for errors or omissions, while the 
supervisor manages on-site operations, coordinates with other units, and ensures overall 
operational efficiency (Li, 2000). Due to the workloads being different in different positions, 
general units will arrange for controllers to rotate positions for duty. 

 
While the air traffic control industry operates continuously, controllers are mandated to 

be on duty around the clock. Flight volumes exhibit time-varying patterns, fluctuating throughout 
the day. Consequently, controllers contend with varying work pressures and loads as they 
manage different numbers of flights at different times. Ultimately, a controller's workload is 
shaped by the specific tasks and complexity of their position, as well as the workload during 
their designated working period. 
 

Data Processing and Model Processing 
 
EEG Data 

 
The four fundamental rhythm waves of the EEG signal can be collected using a 

multichannel physiological instrument: fast waves α, β and slow waves θ, δ. According to 
scientific research in related fields, when a normal adult is clear-headed and alert, the brain 
waves are mainly α waves and β waves; on the contrary, when a person's alertness decreases, 
operational ability deteriorates, and fatigue increases, θ waves will appear in the brain, and δ 
waves will appear when a person is anesthetized or asleep (MOT, 2017). As adults shift from a 
normal to a fatigued state, the slow wave signal in the brain's electrical activity gradually 
intensifies while the fast wave signal weakens. Consequently, the energy ratio between slow 
waves and fast waves serves as an indicator to assess fatigue status (Chen, 2017), as illustrated in 
the following formula (1): 

 

1
EF

E E
θ

α β

=
+

         (1) 
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In the formula, F1 is the fatigue value, Eα is the energy of α wave, Eβ is the energy of β 
wave, and Eθ is the energy of θ wave. Since the subjects did not sleep during the experiment, δ 
waves were not considered in the formula. 

 
During data processing, Biotrace+ software performs Fourier transform and filtering on 

the EEG rhythm, eliminating outliers greater than 50 µV in the data. The average power 
spectrum is used instead of the EEG energy value to calculate the F value, which is the EEG 
fatigue value (Chen,2017), as shown in formula (2).  

 
PF

P P
θ

α β

=
+

                                   (2) 

 
In the formula, F is the fatigue value, Pα is the power of α wave, Pβ is the power of β 

wave, and Pθ is the power of θ wave. 
 

To verify the consistency of the fatigue value change curve with awakening time across 
subjects, correlation analysis was performed between the brain electrical fatigue data and the 
awakening duration of 12 subjects. Results revealed a significant correlation (p<0.05) between 
the EEG fatigue value and awakening time for most subjects. Table 2 below displays the 
correlation coefficients between the fatigue value and awakening duration, with letters 
representing the subject's fatigue value data number and awakening duration measured in hours. 
 
Table 2 
Results of Correlation Analysis between Fatigue Value and Awakening Time 
 

Index Subject 
A 

Subject 
B 

Subject 
C 

Subject 
D 

Subject 
E 

Subject 
F 

Wake time 
and EGG 

fatigue value 

Pearson 
correlation 

0.928** 0.694* 0.636* 0.748** 0.745** 0.736** 

Double tail sig. (p) 0.000 0.012 0.026 0.005 0.005 0.006 

Index Subject 
H 

Subject 
I 

Subject 
J 

Subject 
K 

Subject 
L 

Subject 
M 

Wake time 
and EGG 

fatigue value 

Pearson 
correlation 

0.686* 0.675* 0.738* 0.815** 0.740 0.791* 

Double tail sig. (p) 0.020 0.032 0.037 0.002 0.057 0.019 

 
The table results demonstrate consistent changes in subjects' fatigue values with 

awakening time. Consequently, the average brain electrical fatigue value of all 12 subjects serves 
as a representative characteristic value to correlate with awakening time. Prior to computing the 
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average, outliers are excluded at each time point to enhance the generalizability of the results. 
The fitting results are provided in Figure 2. 
 

Figure 2  
Fatigue Data Fitting Curve 
 

 
 

The figure shows that the average EEG fatigue value of the subjects fluctuated and 
increased with the prolongation of awakening time. However, the fluctuation amplitude was 
small, and the overall correlation was strong. (R2=0.7823). According to the trend line formula, 
the fatigue value prediction formula under the influence of biological rhythm can be obtained as 
Equation (3). 

 
0.03894 1.572Y t= +         (3) 

 
In the formula, Y represents the predicted value of fatigue changing with awakening 

time, and t represents the awakening duration, the difference between the current moment and 
the awakening moment of the day. 

 
Model building 
 

This article establishes a quantitative fatigue prediction model for air traffic controllers 
throughout the day. According to the regulations of the Civil Aviation Administration of China, 
radar controllers shall not be on duty continuously for more than 2 hours. They shall not have 
less than 0.5 hours off during work (MOT, 2017). On this basis, different control units have 
different requirements, and the general modes include 2 hours off for the upper 2 hours, 1 hour 
off for the upper 2 hours, 1 hour off for the upper 1 hour, and 0.5 hours off for the upper 1 hour. 
Controllers usually work from different positions at different times. Therefore, when considering 
the dynamic quantitative evaluation model of fatigue, the daily time is divided into different 
periods according to the work and rest patterns of the controller, and the fatigue values of the 
first and last nodes of each period are calculated. 
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Establish a segmented function based on the controller's scheduling schedule to predict 

dynamic fatigue. Propose a fatigue dynamic quantitative evaluation model, as shown in equation 
(4). 

0 1 1 1 1
1

( ) ( ) ( )( )
n

n i i i i i
i

P n Q k t t C W R t t− − − −
=

= + − + − −∑                       (4) 

 
In the formula, the independent variable n represents the number of time required, P(t) is 

the fatigue prediction value at time t ; i ∈ {1,2, … , n} is the time node number; ti represents the 
time value of each time node during the duty process, such as t0 represents the end of sleep and 
awakening time, t1 represents the time when the first duty ends and the rest begins; tm represents 
the moment requested; Q represents the initial fatigue value after sufficient rest; k represents the 
fatigue accumulation coefficient based on biological rhythm; Ci represents the fatigue value 
accumulation coefficient of the position that starts working at the i moment. If the rest starts at 
the i moment, Ci is 0; Wi represents the fatigue accumulation coefficient of the period when the 
work starts at the i moment. If the break starts at the i moment, Wi is 0; Ri represents the 
recovery coefficient of the period when the rest starts at the i moment. If the work starts at the i 
moment, Ri is 0. The parameter k in the formula has a value of 0.03894, and Q has a value of 
1.572. 
 
Case analysis 
 

The authors conducted research at the regional control room of a specific Air Traffic 
Control Center, selecting several controllers as examples. The authors then calculated the fatigue 
quantification prediction values based on their scheduling information for a particular day, and 
the result of the model was verified and analyzed by the controller supervising the fatigue scale. 
In this control room, controller positions are categorized into director, coordinator, and 
supervisory roles. Controllers typically rotate between these positions according to a scheduling 
rule of 1.5 hours on duty followed by a half-hour rest period in the middle. The scheduling 
information of some controllers in the morning and evening shifts is shown in Table 3 and Table 
4. The tables demonstrate the duty and corresponding duty positions of controllers at different 
times. The letter C stands for Coordinator, D stands for Director, and R stands for Rest. 
 
Table 3  
Schedule Information Sheet for Some Controllers (Morning Shift) 
 
Controller 
number 

0800-
0830 

0830-
0900 

0900-
0930 

0930-
1000 

1000-
1030 

1030-
1100 

1100-
1130 

1130-
1200 

A1 C C C R D D D R 
A2 D D D R C C C R 
B1 C C C R D D D R 
B2 D D D R C C C R 
C1 R C C C R D D D 
C2 R D D D R C C C 
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Table 4  
Schedule Information Sheet for Some Controllers (Night Shift) 
 
Controller 
number 

1800-
1830 

1830-
1900 

1900-
1930 

1930-
2000 

2000-
2030 

2030-
2100 

2100-
2130 

2130-
2200 

A1 C C C R D D D R 
A2 D D D R C C C R 
B1 C C R Rt D D D R 
B2 D D R R C C C R 
C1 C R D D D R C C 
C2 D R C C C R D D 

 
The six controllers are on duty during the morning and evening shifts, with morning 

shifts from 8:00 to 12:00, evening shifts from 18:00 to 22:00, and free breaks from 12:00 to 
18:00 in the middle. 

 
According to the questionnaire survey of the control room controllers and the surveyed 

scores, the specific position allocation of the unit and the load coefficient of each position is 
determined (Refer to Table 5, assuming that everyone in the same position has the same 
workload coefficient).  

 
Table 5  
Workload Coefficient of Each Position of An Approach Control Unit 
 

Position Name Director Coordinator Supervisory 

Fatigue accumulation 
coefficient per hour 0.7 0.6 0.5 

 
According to the change rule of actual flight flow, combined with the results of the 

questionnaire survey and expert scores, the duty-hours of controllers during the day shift were 
divided into four periods according to the degree of business, and the workload coefficients of 
each period were shown in Table 6. 

 
Table 6  
Working Load Coefficient of Each Period 
 

Period 0800-1200 1200-1800 1800-2200 2200-2400 

Fatigue accumulation 
coefficient per hour 2.0 1.5 2.0 1.4 

 
The value of the controller's subjective fatigue degree was collected at the time node 

before the controller's middle rest and returned to work, that is, the value of the fatigue scale 
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filled by the controller according to the current fatigue degree. The fatigue scale adopts the 
Stanford Sleepiness Scale, as shown in Table 7. The controller selects the most suitable state 
level according to the state description of the scale and records the current fatigue level value of 
the controller. The post-work fatigue scale value of controllers is correlated with the output value 
of the fatigue prediction model to verify the reliability of its application. 
 
Table 7 
Stanford Sleepiness Scale (SSS) 
 

Degree of Sleepiness Scale Rating 

Felling active; Vital alert or wide awake 1 

Functioning at high level but not at peak; Able to concentrate 2 

Awake but relaxed; Responsive but not fully alert 3 

Somewhat foggy; Lie down 4 

Foggy; Lossing interest in remaining awake; Slowing down 5 

Sleepy; Woozy; Fighting sleep; Prefer to lie down 6 

No longer fighting sleep; Sleep onset soon; Having dream-
like thoughts 7 

Asleep x 

 
According to formula (4) and Table 3 through Table 6, fatigue prediction values of six 

controllers in morning and evening shifts were calculated. According to the survey results of the 
scale, the fatigue values of the six controllers were generally the same before starting work at 
8:00 in the morning shift. They were relatively excited, and the self-rated fatigue level was 2 or 
3. Therefore, it is considered that the initial fatigue state of controllers is the same, and the same 
Q value is taken. Since 12:00 to 18:00, between the morning and evening shifts, was free rest 
time, the controllers got sufficient sleep supplements and were in a relatively complete state of 
spirit before the 18:00 shift. The self-rated fatigue value was the same, and the same Q value was 
used for calculation. 

 
Taking the early shift of controller A1 as an example, the parameters in the model are 

calculated. The controller wakes up at 6:00 that day, t0 is 6, the start time is 8:00, t1 is 8, and so 
on. Based on the working load coefficient of each position in each period, the values of each 
parameter are shown in Table 8. In the definition, C0W0 is the fatigue accumulation coefficient 
of commuting and preparation work, and the value is 0.5. In addition to working hours, the rest 
coefficient Ri equals 0.05. Any parameter equal to 0 is omitted from the table. 
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Table 8  
Parameter Value Table 
 
Parameter name Value Parameter name Value 

0t  6 1C  0.6 
1t  8 3C  0.7 
2t  9.5 1W  2.0 
3t  10 3W  2.0 
4t  11.5 2,4R  0.05 
5t  12 0 0C W  0.5 

 
The above parameter values were substituted into formula (4) to calculate the cumulative 

fatigue value and cumulative rest recovery value at each moment and obtain the fatigue 
prediction evaluation value at each moment, as shown in Table 9. 

 
Table 9  
Calculation Results of Controller A1 Morning Shift Fatigue Model 
 

Start 
time 

End 
time Duration/h Work or activity type Fatigue 

value 
Rest 
value 

The end-time 
fatigue 

evaluation value 

0600 0800 2.0 Commute and shift 
preparation 2.650 0 2.650 

0800 0930 1.5 Coordinator 1.858 0 4.508 

0930 1000 0.5 Rest 0.019 -0.025 4.502 

1000 1130 1.0 Director 2.158 0 6.660 

1130 1200 0.5 Rest 0.019 -0.025 6.654 

 
The same method was used to calculate the fatigue prediction value of each node of the 

evening shift of the A1 controller and the morning and evening shifts of the remaining 
controllers. The fatigue prediction trend of six controllers in the morning and evening shifts was 
obtained, as shown in Fig. 3 and Fig. 4. The solid line in the chart represents the controller's 
work process, and the dotted line represents the rest of the controller. 
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Figure 3  
The Trend of Fatigue Prediction of the Controller Early Shift 
 

 
 
Figure 4  
The Trend of Fatigue Prediction of the Controller Night Shift 
 

 
 

Spearman correlation analysis was conducted between the predicted fatigue value of the 
controller at every moment, and the subjective fatigue scale value filled in, and the results are 
shown in Table 10. The results showed that the model output value strongly correlated with the 
subjective fatigue value, and the two results were consistent. This model can be used as a 
dynamic quantitative evaluation method for controller fatigue, providing a convenient and 
effective controller prediction. 
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Table 10  
Correlation Analysis Result 
 

 
 
 
 
 

This paper introduces a biorhythm-based approach to predict the fatigue levels of 
controllers during duty. Through a carefully designed 24-hour sleep deprivation experiment, 
EEG fatigue changes of subjects were recorded continuously within the 24-hour period post-
awakening. Data analysis and fitting techniques were then applied to derive a formula correlating 
EEG fatigue with wakefulness time. Subsequently, a dynamic quantitative evaluation model for 
fatigue was developed, integrating workload coefficients specific to each control position and 
working period. The reliability of the model for fatigue prediction was then confirmed through 
verification. The conclusions drawn are as follows: 

 
1) The output value of the established fatigue quantitative evaluation model demonstrates 

a significant correlation with the subjective fatigue scale values reported by the subjects, 
indicating strong consistency. This model effectively predicts the fatigue experienced by 
controllers on duty, thereby providing a foundational framework for proposing optimal rest and 
scheduling strategies for personnel. Such measures are essential for mitigating safety risks 
associated with air traffic control operations. 

 
2) The fatigue of controllers on duty was analyzed from two angles: biological rhythms 

and workload. We established a functional formula correlating fatigue with awakening time 
using objective EEG test data, and subjective workload coefficients were assigned for different 
positions and periods. By integrating these components, a comprehensive model was developed. 
This model allows for the quantitative evaluation of fatigue levels at any given moment of duty, 
with input derived from the controller scheduling table. 

 
3) The participants in this experiment consisted of male control students with slight 

variations in age and health status, resulting in a limited sample size that may restrict the 
generalizability of the findings. To address this limitation, future experiments will involve in-
service controllers of diverse genders and ages with an expanded sample size. These subsequent 
experiments aim to enhance the reliability and accuracy of the fatigue detection model by 
broadening the scope of experimental content. 
 

Future Study 
In the future, if the physiological data of controllers can be tracked for a long time, the 

physiological database of controllers can be established, and the fatigue prediction model of 
controllers can be established by using the method proposed in this paper. 
 

  Model output 
value 

Subjectivity fatigue 
value 

Model output 
value 

Correlation coefficient 1.000 0.681 
Sig. (double tail)  0.000 



Fan et al.: Enhancing Insight into Air Traffic Controller Fatigue: A Dynamic Quantitative Examination through 
Biological Rhythms 

 
A publication of the University Aviation Association, © 2024 15 

References  

Akerstedt, T. & Folkard, S. (2004). Predicting the duration of sleep from the three process model 
of regulation of alertness. Aviation Space and Environmental Medicine, 75( S3), A75－
83．DOI: 10.1136/oem.53.2.136 

 
Arico, P., Borghini, G., Flumeri, G.D., Colosimo, A., Graziani, I., Imbert, J., Granger, G., 

Benhacene, R., Terenzi, M., Pozzi, S. & Babiloni, F. (2015). Reliability over time of 
EEG-based mental workload evaluation during Air Traffic Management (ATM) tasks. 
Annu Int Conf IEEE Eng Med Biol Soc. DOI: 10.1109/EMBC.2015.7320063 

 
Chen, F., & Wang, L. (2017). Evaluation for mental fatigue of controllers based on EEG signals 

under different work shifts. China Science Paper, 12(19), 2198-2203. 
 
Chen, J. (2015). Study on fatigue and eye movement data controllers based on PERCLOS. 

Wireless Internet Technology, 12(10), 130–131. 
 
Healthy China Action Promotion Committee. (2019). Healthy China Initiative (2019-

2030).http://www.nhc.gov.cn/guihuaxxs/s3585u/201907/e9275fb95d5b4295be8308415d
4cd1b2/files/470339610aea4a7887d0810b4c00c9bd.pdf 

 
International Civil Aviation Organization (ICAO). (2016). Fatigue risk management systems 

manual for regulators. ICAO Doc.9966 
https://www.icao.int/safety/fatiguemanagement/FRMS%20Tools/Doc%209966.FRMS.20
16%20Edition.en.pdf 

 
Lal, S.K.L. & Craig, A. (2001). A critical review of the psychophysiology of driver fatigue. 

Biological Psychology,55(3),173–194. https://doi.org/10.1016/S0301-0511(00)00085-5 
 
Li, S. (2019). Study on the subway crew planning based on the biological rhythm. Beijing 

Jiaotong University. 
 
Li, W. (2000). Coordination between the controlling and coordinating position in control work. 

Journal of Civil Aviation Flight College of China, 2(02), 3-4 
 
Li, X., Xu, Y., & Zhang, H. (2017). A study on dynamic quantitative evaluation of Sutrain 

driver’s fatigue risk. China Safety Science Journal, 27(02), 18–23. 
10.16265/j.cnki.issn1003-3033. 2017. 02. 004. 

 
Lu, C-t., Cheng, M., Lu, X., & Fu, H. (Oct. 2023). Multifaceted Pandemic Impact on Pilot 

Students – Perspectives of Chinese Part 141 Flight Schools, Journal of Aviation, 7(3), 
330–336. https://doi.org/10.30518/jav.1324918 

 
  



Collegiate Aviation Review International 

http://ojs.library.okstate.edu/osu/index.php/cari 16 

Lu, C-t., Cheng, M., Lu, X., Fu, H. & Ji, Z. (January 2024). Navigating Psychological 
Trajectories: A Comparative Analysis of the COVID-19 Pandemic’s Influence on 
Aviation Students in the United States and China, International Journal of Crisis 
Management, 14(1). doi: 10.6929/IJCM.202401_14(1).0001 

 
Rosa, R.R. (2004). Commentary on a model to predict work－related fatigue based on hours of 

work. Aviation Space and Environmental Medicine, 75( 3), A72－A73． 
 
Ministry of Transport of the People's Republic of China. (2017). Civil aviation administration 

air traffic regulations: CCAR93-TM-R5. Beijing: Civil Aviation Administration of China. 
 
Napoli. N. (2023). Getting good sleep could add years to your life. The American College of 

Cardiology. https://www.acc.org/About-ACC/Press-Releases/2023/02/22/21/35/Getting-
Good-Sleep-Could-Add-Years-to-Your-Life 

 
Roach, G. D., Fletcher, A., & Dawson, D. (2004). A model to predict work-related fatigue based 

on hours of work. Aviation, Space, and Environmental Medicine, 75( S3), A 61－69． 
 
Smets, E.M.A., Garssen, B., Bonke, B., & De Haes, J.C.J.M. (1995). The Multidimensional 

Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. 
Journal of Psychosomatic Research, 39(3), 315-325. https://doi.org/10.1016/0022-
3999(94)00125-O 

 
Shou, G. & Ding, L. (2013). Frontal theta EEG dynamics in a real-world air traffic control task. 

Annu International Conference IEEE Eng Med Biol Soc. DOI: 
10.1109/EMBC.2013.6610818 

 
Sun, R., Ma, G., & Yuan, L. (2016). Revision on multidimensional fatigue inventory for 

controllers and analysis on reliability and validity analysis. Occupation and Health, 
32(22), 3053-3056.  

 
Sun, R., Shi, Z. & Wang, J. (2014). Face recognition for fatigue risk assessment of air traffic 

controllers. Journal of Transport Information and Safety, 3 (1), 1-4. doi: 
10.3963/j.issn.1674-4861.2014.01.001 

 
Wu, D. (2018). Study on the fatigue risk prediction model of air traffic controller. Civil Aviation 

University of China.   
 

https://doi.org/10.1016/0022-3999(94)00125-O
https://doi.org/10.1016/0022-3999(94)00125-O

	References

