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A pilot’s awareness of an airplane’s power-off glide performance is critical for successfully responding to an engine 

failure in flight. Pilot’s operating handbooks (POH) and airplane flight manuals (AFM) provide the minimum 

required glide information; however, there is more information that can better equip pilots to extract the maximum 

glide performance from an airplane. Information about the effect of weight changes on the glide is available but does 

not seem to be common knowledge among pilots. Information concerning optimum bank angles to use in gliding 

turns is much less available and seems completely unknown to pilots. This paper provides guidance to pilots for 

applying weight correction to the best glide speed. It also presents a methodology for determining the optimum bank 

angle in power-off glides that require a gliding turn to a safe landing location.  The results of the study include the 

optimum gliding bank angles for airplanes with varying glide ratios (GR) along with rules of thumb for determining 

the optimum bank angle in flight. The findings of this research can be utilized to supplement 1) the glide 

performance information used and presented by digital avionics, 2) the glide information contained in POHs and 

AFMs, and 3) flight training for power-off glides with or without turns to safe landing locations, all with the goal of 

providing pilots with more tools to land safely at a suitable location in the event of an engine failure. 
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Introduction 

  

Power-off glide performance is a consideration that all pilots should have prior to and 

during every flight, especially when in a single-engine airplane. As with other airplane 

performance information, an airplane’s glide performance is presented in the pilot’s operating 

handbook (POH) and/or the airplane flight manual (AFM). That is, of course, if the airplane was 

certified after 1996. In February of that year, the Federal Aviation Administration (FAA) 

mandated that POHs and/or AFMs include a minimum of 1) the airplane’s maximum horizontal 

distance covered over the ground per 1,000 𝑓𝑡 of altitude lost in a power-off glide and 2) the 

airspeed required when doing so (Glide: Single-Engine Airplanes, 1996).  

 

While these pieces of performance information are valuable in planning and performing a 

power-off glide, there is more information that pilots can know about optimizing an airplane’s 

power-off glide performance. Commonly used publications and handbooks such as the FAA’s 

Airplane Flying Handbook (2021) and the well-known text Aerodynamics for Naval Aviators 

(Hurt, 1965) include aerodynamic information and practical instructions regarding glide 

performance. These and other pilot-focused texts clearly present the two required glide 

performance values (or their equivalent) required by the FAA. They go further by indicating that 

the airspeed necessary for maximum glide performance is a function of weight. Chapter 3 of the 

Airplane Flying Handbook (2021) states that a weight adjustment is required; however, it does 

not present a method for making the adjustment. Hurt (1965) refers to the weight correction, and 

he presents an equation that can be used to make it.  

 

Another important component of power-off glide performance is the planning for and 

execution of a required turn to a landing destination during the glide. When the engine failure 

occurs on or shortly after takeoff, the possibility of returning to the departure runway is referred 

to as the “impossible turn”. Chapter 18 of the Airplane Flying Handbook (2021) presents general 

considerations for attempting such a turn, and articles, such as those by Rogers (1995) and 

Collazo Garcia et al. (2021), present more specific guidance to include an optimal bank angle to 

use in the turn.  

 

For power-off glides being conducted from a more substantial altitude, selection of and 

route planning to a suitable landing location is very important. Much research has been 

conducted into determining optimum glide trajectories using Dubins paths to landing locations 

based upon terrain, winds, runway headings, airport locations, and an airplane’s aerodynamic 

characteristics. Examples of such work are the articles by Atkins, Portillo, & Strube (2006); 

Chitsaz & LaValle (2007); Meuleau, Plaunt, Smith, & Smith (2009); Adler, Bar-Gill, & Shimkin 

(2012); Di Donato & Atkins (2016); Stephan & Fichter (2016); and Segal, Bar-Gill, & Shimkin 

(2019). Previous research has been focused on very specific cases, the results of which were only 

applicable to those cases. The research was also conducted using numerical algorithms, well 



Collegiate Aviation Review International 

A publication of the University Aviation Association, © 2023 182 

suited to computational analysis, but much less suited to practical use by pilots either in 

preparation for the possibility of an engine failure or during an actual power-off glide.  

 

It is the purpose of this research to develop practical guidance for pilots to use in 

preparation for and in the conduct of power-off glides to safe landing locations that optimize the 

glide performance of the airplane. This paper intends to serve as an updated source of 

information and as a practical guide for glide performance. Guidance for applying the known 

weight correction to glide airspeed will be presented, and new research into optimal bank angles 

for gliding turns will be shared to include pilot rules-of-thumb for its application.  

 

Glide Performance 

 

Wings Level Glide 

  

Gliding, as discussed in this paper, is considered with no power (engine-out) and in calm 

wind conditions. Wings-level gliding is presented first. A gliding airplane is shown in Figure 1, 

along with velocity and forces. Having no engine power to produce thrust, a component of the 

airplane’s weight(𝑊𝑇), is needed to overcome the airplane’s drag (𝐷), which is always directed 

opposite the direction of the airplane’s motion or in the same direction as the relative wind 
(𝑅𝑊). The only way for this to occur is in descent. The airplane’s velocity (𝑣) is shown to be 

along an axis (the flight direction) at an angle (𝛾) below the horizon (the horizontal axis). 𝛾 is 

also known as the glide angle. The airplane’s flight direction must be set such that its 𝑊𝑇 is equal 

(and opposite) to its 𝐷 in order to maintain its velocity in the flight direction. Lift (𝐿), by 

definition, is perpendicular to the 𝑅𝑊. When 𝐿 is equal (and opposite) to the normal component 

(normal to the flight direction) of the airplane’s weight (𝑊𝑁), the airplane will descend at a 

constant 𝛾. In short, the sum of forces in any direction is zero for a steady, unaccelerated glide.  

 

A closer inspection can be made of the airplane’s 𝑊 and its components. The angle of 

separation between 𝑊 and 𝑊𝑁 is equivalent to the glide angle, 𝛾, and 𝑊𝑁 and 𝑊𝑇 are 

perpendicular to one another. For right triangles such as this one, a basic trigonometric 

relationship relates these two components, as shown in Equation 1. 

 

tan 𝛾 =
𝑊𝑇

𝑊𝑁
          (1) 

 

In a steady glide, 𝐷 and 𝐿 can then be substituted for 𝑊𝑇 and 𝑊𝑁, respectively. Following these 

substitutions and solving for 𝛾 results in Equation 2. 

 

𝛾 = tan−1 (
1

𝐿
𝐷⁄

)         (2) 

 

Equation 2 reveals the aerodynamic nature of glide performance.  

 

All lifting devices, whether 2D airfoils, 3D wings, or entire aircraft, can be described by 

their aerodynamic characteristics. The typical presentation of these characteristics is in graphical 

form, with which the reader of this paper is most likely already familiar. An example of such a 

presentation is shown in Figure 2. 
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Figure 1 

Free Body Diagram of an Airplane in a Power-off Glide 

 

 
 

Figure 2 

NACA 6612 Aerodynamic Characteristic Curves 

 

 
Note. Adapted from The Characteristics of 78 Related Airfoil Sections from Tests in the Variable-Density Wind Tunnel, NACA-TR-460 (1933) 

by Jacobs, E., Ward, K.E., & Pinkerton, R.M., retrieved from ntrs.nasa.gov. 
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Four basic aerodynamic characteristics are presented in Figure 2 for the NACA 6612 

airfoil: the lift coefficient (𝐶𝐿), the drag coefficient (𝐶𝐷), the lift-to-drag ratio (𝐿 𝐷⁄ ), and the 

center of pressure (𝐶𝑃). Each of these is a nondimensional value that represents different aspects 

of the airfoil’s aerodynamic behavior as a function of the airfoil’s angle of attack (𝛼). 𝐶𝐿 and 𝐶𝐷 

represent the lift and drag forces that can be created by the airfoil. The 𝐶𝑃 represents the 

chordwise location of those forces. The airfoil’s lift will be maximized when operated at its 

highest lift coefficient (𝐶𝐿𝑚𝑎𝑥
). The angle of attack at which this occurs is known as the critical 

angle of attack (𝛼𝑐𝑟𝑖𝑡). Maximizing the airfoil’s lift is desirable for slow flight and maneuvering; 

however, it is accompanied by high drag, which requires high power, and is therefore not ideal 

for all flight conditions, especially power-off, gliding flight. Rather than taking the airfoil’s 𝐶𝐿 in 

isolation, comparing the 𝐶𝐿 to the 𝐶𝐷 at any angle of attack will provide a more complete 

aerodynamic picture of the airfoil’s performance. This comparison was captured by 𝐿 𝐷⁄ . The 

higher the 𝐿 𝐷⁄ , the more lift an airfoil can create for a given amount of drag; or put another way, 

for a given amount of lift, the airfoil will produce less drag. Therefore, 𝐿 𝐷⁄  is an indication of 

the airfoil’s aerodynamic effectiveness (effectiveness being defined as the ability of the airfoil to 

produce what is desired (𝐿) while minimizing what is not (𝐷)). As can be seen in Figure 2, the 

NACA 6612’s 𝐿 𝐷⁄  curve achieves a maximum value ((𝐿 𝐷⁄ )𝑚𝑎𝑥) at a specific angle of attack, 

known as the optimum angle of attack (𝛼𝑜𝑝𝑡).  

 

Figure 2 presents an example of one airfoil’s aerodynamic characteristics. As previously 

mentioned, all lifting devices, including entire airplanes, can be described by characteristics such 

as these; therefore, all airplanes will have an 𝛼𝑜𝑝𝑡 and an associated (𝐿 𝐷⁄ )𝑚𝑎𝑥. According to 

Equation 2, 𝐿 𝐷⁄  is the only input needed to determine an airplane’s glide angle. The lower the 

glide angle (𝛾), the higher an airplane’s maximum glide range will be. Substituting (𝐿 𝐷⁄ )𝑚𝑎𝑥 

into Equation 2 yeilds the minimum possible glide angle as shown in Equation 3. 

 

𝛾𝑚𝑖𝑛 = tan−1 (
1

(𝐿
𝐷⁄ )

𝑚𝑎𝑥

)        (3) 

 

 The intent of this article, as is articulated in the title, is to provide glide performance 

guidance to pilots. Although glide performance depends upon a specific aerodynamic 

characteristic, (𝐿
𝐷⁄ )

𝑚𝑎𝑥
, obtained when operating at a specific angle of attack, 𝛼𝑜𝑝𝑡, that results 

in the lowest glide angle, 𝛾𝑚𝑖𝑛; pilot’s operating handbooks (POH) and airplane flight manuals 

(AFM), the primary sources of performance guidance for pilots, do not use this terminology. 

Recall the right triangle in Figure 2 that includes the airplane’s weight, the weight’s components, 

and the glide angle. Figure 3 presents this triangle again, with the substitutions of 𝐷 and 𝐿 for 

𝑊𝑇 and 𝑊𝑁. It also presents another triangle that represents the distance traveled in the flight 

direction and that distance’s components in the horizontal and vertical axes. The distance 

traveled along the flight direction can be separated into the ground distance covered while 

gliding (𝑥) and the associated altitude lost (ℎ). These two components are at right angles to one 

another and can be related to one another via Equation 4. 

 

tan 𝛾 =
ℎ

𝑥
          (4) 
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Figure 3 

Distance Travelled while Gliding 

 

 
 

 

Lift and drag can also be related to one another in the same way via Equation 5. 

 

tan 𝛾 =
𝐷

𝐿
          (5) 

 

Equations 4 and 5 can be equated and solved for 𝑥 as shown in Equation 6. 

 

𝑥 = ℎ (
𝐿

𝐷
)          (6) 

 

Equation 6 provides the ability to calculate the ground distance covered from a known 

altitude for a given 𝐿 𝐷⁄ . Maximum glide range, 𝑅𝐺, is obtained from Equation 6 by substituting 
(𝐿 𝐷⁄ )𝑚𝑎𝑥 as shown in Equation 7. 

 

𝑅𝐺 = ℎ (
𝐿

𝐷
)

𝑚𝑎𝑥
         (7) 

 

Again, (𝐿 𝐷⁄ )𝑚𝑎𝑥 does not appear in POHs or AFMs, at least not by that name. The ratio 

of the maximum ground distance covered for a given amount of altitude lost in a glide is defined 

to be glide ratio (𝐺𝑅). 𝐺𝑅 is therefore associated with gliding at 𝛾𝑚𝑖𝑛. Reciprocating and 

equating Equations 4 and 5 while at 𝛾𝑚𝑖𝑛 reveals that an airplane’s (𝐿 𝐷⁄ )𝑚𝑎𝑥 and its 𝐺𝑅 are 

equal. 𝐺𝑅 is typically included in POHs and AFMs as one of the primary metrics for an 

airplane’s glide performance capability. Not all handbooks will include 𝐺𝑅 since glide 

performance information was not required by federal regulation until 1996. Aircraft certified 

prior to 1996 might include a 𝐺𝑅, a graph of altitude vs. glide range (from which 𝐺𝑅 can be 

extracted), the distance traveled for 1,000 𝑓𝑡 of altitude lost or no glide performance at all. 
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Substituting 𝐺𝑅 into Equation 7 yields Equation 8, a more pilot-oriented equation for glide 

range. 

𝑅𝐺 = ℎ(𝐺𝑅)          (8) 

 

Equation 8 can be used, with an appropriate conversion to either statute or nautical miles 

(assuming ℎ is in 𝑓𝑡), to determine possible landing locations within the airplane’s glide range. 

In order to enable the airplane to achieve this range, a pilot needs more information. Specifically, 

the pilot would need to know the airplane’s 𝛼𝑜𝑝𝑡. Flying at this angle would enable the airplane 

to achieve its (𝐿 𝐷⁄ )𝑚𝑎𝑥 thereby minimizing its glide angle and maximizing its glide range. 

Flying based on angle of attack is the most effective way to maximize power-off glide range; 

however, civilian airplanes are not typically equipped with angle of attack indicators. Even if 

they were, federal regulations do not require POHs nor AFMs to contain an airplane’s 𝛼𝑜𝑝𝑡. 

What they are required to provide is the airspeed that enables maximum glide range, 𝑣𝐺. 

Advisory Circular AC 23-8C (2011) provides recommended techniques for flight testing Part 23 

certified aircraft, including the flight test used to determine maximum glide performance. The 

test includes a series of power-off glides to be conducted through a range of airspeeds. An 

airplane’s 𝑣𝐺 can be identified from a plot of the data collected during the glides. The value is 

then published in the POH or AFM in several locations, most notably in the Emergency 

Procedures chapter. Unless a pilot has 𝑣𝐺 memorized (which the author would recommend), the 

handbook’s Emergency Procedure for power-off, maximum range gliding would need to be 

referenced (which the author also recommends) following an in-flight engine failure where the 

engine cannot be restarted and a power-off glide to a suitable landing site must take place. 

 

Effect of Weight 

 

 One of the necessary conditions for presenting glide information in POHs or AFMs is 

that the performance information must be for the airplane at its maximum takeoff weight 

(MTOW). The published 𝑣𝐺 is, therefore, accurate if and only if the airplane is at MTOW. The 

reality for many/most flights is that they begin with the airplane below MTOW, and even if they 

did begin at MTOW, the airplane’s weight is always decreasing in line with its fuel flow. This 

means that establishing the published 𝑣𝐺 in order to maximize the glide range will not actually 

maximize the glide. It will come close to doing so, but more performance is available. In order to 

truly obtain maximum glide performance, 𝑣𝐺 must be adjusted for the airplane’s weight at the 

time that power is lost. Here is that process. It begins with a conceptual scenario in which an 

airplane is flying straight and level at MSL at its MTOW. Let the aircraft be doing this at the 

published 𝑣𝐺 with the angle of attack necessary to develop enough lift (𝐿𝑖) to balance its weight. 

This balance is captured in the lift equation, as shown in Equation 9. 

 

𝐿𝑖 =
1

2
𝐶𝐿𝜌0𝑣𝐺

2𝑆 = 𝑀𝑇𝑂𝑊        (9) 

 

The next step is to decrease the weight of the airplane to a new value, 𝑊𝑁, while 

maintaining altitude and angle of attack. Maintaining altitude keeps density (𝜌0) constant, and 

maintaining the angle of attack keeps the lift coefficient constant. In order to decrease the lift to 

𝐿𝑁, to accommodate the new weight, the only option remaining, assuming the wing area (𝑆) is 

also constant, is to decrease airspeed. Equation 10 shows this new condition. 



Callender: Pilot's Guide to Maximum Glide Performance 

http://ojs.library.okstate.edu/osu/index.php/cari 187 

 

𝐿𝑁 =
1

2
𝐶𝐿𝜌0𝑣𝐺𝑁

2 𝑆 = 𝑊𝑁        (10) 

 

Finally, Equation 10 is divided by Equation 9 and solved for the new airspeed, 𝑣𝐺𝑁
, as 

shown in Equation 11. 

 

𝑣𝐺𝑁
= 𝑣𝐺√

𝑤𝑁

𝑀𝑇𝑂𝑊
         (11) 

 

With two handbook values, 𝑀𝑇𝑂𝑊 and 𝑣𝐺, and Equation 11, the airspeed that will 

actually maximize the airplane’s glide range can be calculated.  

  

The simplicity of Equation 11 makes it accessible to pilots in an engine-out scenario, 

especially if the aircraft is equipped with a fuel flow meter or fuel counter that keeps up with the 

amount of fuel used. The weight of the fuel used subtracted from the airplane’s loaded weight 

results in the new weight, 𝑊𝑁. At a minimum, the author recommends calculating and knowing 

the lower limit of 𝑣𝐺𝑁
 for any airplane. For example, an A36 Beechcraft Bonanza has a 𝑀𝑇𝑂𝑊 

of 3,650 𝑙𝑏𝑠 and a 𝑣𝐺 of 110 𝐾𝐼𝐴𝑆 (2006). With no usable fuel, no passengers, and no cargo, the 

A36 and pilot might weigh on the order of 2,700 𝑙𝑏𝑠. Using Equation 11 with these inputs 

results in a minimum expected value of 𝑣𝐺𝑁
 as shown in Equation 12. 

 

 𝑣𝐺𝑁
= 110√

2,700

3,650
= 94.6 𝐾𝐼𝐴𝑆       (12) 

 

With this value for 𝑣𝐺𝑁
 and the published 𝑣𝐺, the lower and upper boundaries for the 

speed for maximum glide range for the airplane can be used for interpolation for any airplane 

weight. Interpolating is relatively easy; however, basic interpolations are linear, whereas the 

change in speed, according to Equation 11, is not. Another method would be to prepare and use a 

plot, as shown in example A36 in Figure 4. A pilot equipped with a plot similar to Figure 4 for 

any airplane could quickly and easily identify the best airspeed to fly in an engine-out situation. 

This type of plot could easily be created in commonly available spreadsheet software (i.e., 

Microsoft Excel) using Equation 11. Whether using a plot, interpolating between maximum and 

minimum speeds, or calculating the value directly, in order to ensure the best glide range 

possible, a pilot should (and is able to) adjust an airplane’s maximum range glide speed for 

weight. 
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Figure 4 

Speed for Maximum Glide Range vs. Weight for Example A36 

 
Effect of Turning 

 

 Just as glide information in airplanes’ POHs and AFMs only applies to MTOW, the glide 

information that they present is also only for wings-level (non-turning) flights. Figure 5 presents 

a front view of an airplane in a banked turn. 

 

Figure 5 

Front View of Turning Airplane 
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As seen in the figure, the lift is always perpendicular to the lateral axis; therefore, it will 

change direction in keeping with the bank angle. When the engine is operating, the bank angle 

would be accompanied by increased back pressure and/or increased power in order to maintain 

altitude in a coordinated turn. In an engine-out banked turn, maintaining altitude isn’t possible, 

so neither increased back pressure nor increased power is useful (or even possible). Assuming 

that a turn is initiated at 𝑣𝐺, the same lift-to-drag ratio will be maintained; however, the lift will 

be directed as shown in Figure 5. With lift at this angle, its component in the vertical direction is 

reduced. The vertical component of lift is what contributes to glide performance. This is 

demonstrated by a reduction in 𝐺𝑅 according to Equation 13 where 𝐺𝑅𝜃 represents the reduced 

𝐺𝑅 in a gliding turn compared to the 𝐺𝑅 in a wings-level glide. 

 

𝐺𝑅𝜃 = 𝐺𝑅 cos 𝜃         (13) 

 

Figure 6 shows the consequence of turning at various bank angles on 𝐺𝑅 according to 

Equation 13. The significant effect of bank angle on 𝐺𝑅 is clear as bank angles increase. For 

example, an airplane in a gliding turn with 30° of bank will still have approximately 87% of its 

wings-level 𝐺𝑅. The same airplane in a gliding turn with 60° of bank will only be able to 

produce 50% of its wings-level 𝐺𝑅. The clear takeaway is that wings-level glides offer 

maximum glide range. If only the best destinations were always straight ahead in engine-out 

scenarios. How to deal with necessary (and suboptimal) turns to a safe landing location will be 

dealt with in the next section. 

 

Figure 6 

𝐺𝑅𝜃 vs. 𝜃 as a % of Wings-Level 𝐺𝑅 
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Gliding Turns to Destination 

 

Glide Path with Required Turn 

 

 Unless an engine failure occurs within the glide range of the destination airport, which 

would typically be located straight ahead, a turn to an appropriate landing location will be 

necessary. It is clear from Equation 13 and Figure 6 that turning in a power-off glide isn’t great 

for extending the glide range. If and when a turn is necessary, the question is how best to do it. 

From Equation 13, the lowest bank angle possible would be best. That is true; however, a turn’s 

footprint as represented by the turn radius (𝑟) must also be considered. In a constant altitude, 

coordinated turn, turn radius is calculated via Equation 14. 

 

𝑟 =
𝑣2

𝑔 tan 𝜃
          (14) 

 

In a power-off glide, Equation 14 must be modified, resulting in Equation 15 (Asselin, 1997). 

 

𝑟 =
𝑣2

𝑔 tan 𝜃 cos 𝛾
          (15) 

 

The equation for glide angle (𝛾) is derived by rearranging Equation 5 with a substitution from 

Equation 13, as shown in Equation 16. 

 

𝛾 = tan−1 (
1

𝐺𝑅 cos 𝜃
)         (16) 

 

The results of Equations 15 and 16 can be visualized with an example. Take, for instance, an 

airplane gliding at 100 𝐾𝑇𝐴𝑆. If the airplane has a 𝐺𝑅 of 10:1, Figure 7 shows its turn radius as 

a function of bank angle. While a low bank angle will preserve the airplane’s 𝐺𝑅, it will result in 

a large turn radius. Turn radius contributes to the distance (𝑑Δ𝜙) that must be covered, as viewed 

from above, while making a heading change (Δ𝜙), as shown in Equation 17. 

 

𝑑∆𝜙 = 𝑟 ∙ Δ𝜙          (17) 
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Figure 7 

Glide Ratio vs. Bank Angle for an Example Gliding Airplane 

 

 
 

It is important to note that the heading change must be in radians in Equation 17. 

Continuing the example from above, let the airplane’s distance covered over the ground while 

gliding at two bank angles (5° 𝑎𝑛𝑑 60°) be calculated for a 180° heading change. The airplane 

gliding with a 5° bank angle will cover 5.25 𝑁𝑀 over the ground, while the airplane gliding with 

a 60° bank angle will cover only 0.27 𝑁𝑀… almost twenty times less! The distances covered in 

the turn are depicted in Figure 8. Lower bank angles result in higher lift to drag ratios, 𝐺𝑅𝜃, but 

they also result in greater ground distances. Greater ground distances mean more altitude will be 

lost during the direction change. Large bank angles greatly reduce lift to drag, but they allow for 

direction changes with much smaller ground distances required. The bank angle that a pilot 

should choose in a power-off glide when a heading change is necessary is not immediately 

evident. It is a balancing act between preserving lift to drag ratio and minimizing the ground 

distance covered in the turn. 

 

Calculating Altitude on Arrival at Destination 

 

Calculations were conducted for an airplane with several different lift-to-drag ratios 

representative of a range of general aviation airplanes. The airplane’s glide range was calculated 

from an initial altitude from which an engine failure occurred. Safe landing sites were located at 

bearings from 10° to 175° from the initial heading of the airplane. Glides were initiated with 

turns to intercept a path to the landing site. Bank angles in the turn to the intercept path were 

varied from 10° to 80°. Figure 9 presents an example of a calculated path that would be 

necessary to reach a safe landing destination. 
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Figure 8 

Distance Covered in a 180° Turn at Two Bank Angles 

 

 
Figure 9 

Glide Path to a Safe Landing Destination 

 

 
 

Each glide distance calculation began by setting the airplane’s 𝐺𝑅 and 𝑣𝐺. The 𝐺𝑅 was 

used, along with a preselected 𝐴𝐺𝐿 height (ℎ), to calculate and set the distance (𝑑) to a landing 

location that would allow the airplane to safely glide to the location with altitude to spare, if the 

landing location was on the airplane’s original heading (𝜙1). In other words, a power-off glide 

requiring no turn would be possible to the landing location. With the height and distance to the 

landing location settled, the landing location was set at the first bearing (𝜙2), which required a 
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gliding turn. The scenario is shown in Figure 10, including all distances and angles used to 

calculate the glide range.  

 

Figure 10 

Glide Path with Distances and Angles used to Calculate Glide Range 

 

 
 

The process began with the lowest bank angle (𝜃). Equation 15 was then used to 

calculate the airplane’s turn radius (𝑟). Equations 18-23 were used to calculate the final heading 
(𝜙𝑖𝑛𝑡) that marked the point in the turn at which an intercept path the airport was achieved. 

 

𝑑𝑐𝑙 = √[𝑑 sin 𝜙2 − 𝑟 sin(𝜙1 + 90)]2 + [𝑑 sin 𝜙2 − 𝑟 cos(𝜙1 + 90)]2   (18) 

𝛽1 = sin−1 (
𝑟

𝑑𝑐𝑙
)         (19) 

𝛽2 = 90 − 𝛽1          (20) 

𝛽3 = tan−1 [
𝑑 cos 𝜙2−𝑟 cos(𝜙1+90)

𝑑 sin 𝜙2−𝑟 sin(𝜙1+90)
]       (21) 

Δ𝜙 = 180 − 𝜙1 − 𝛽2 − 𝛽3        (22) 

𝜙𝑖𝑛𝑡 = 𝜙1 +  Δ𝜙         (23) 

 

In these equations, 𝑑 is the distance from the aircraft location to the airport; 𝜙1 is the aircraft’s 

flight path direction; 𝜙2 is the airport direction from the aircraft position; 𝑑𝑐𝑙 is the distance to 

the airport after turning; 𝛽1, 𝛽2, and 𝛽3 are geometric calculations used to determine the aircraft’s 

necessary direction change (Δ𝜙) and its final direction (𝜙𝑖𝑛𝑡) to the airport. 

 

Equations 17 and 22 were then used to calculate the ground distance covered (𝑑∆𝜙) in 

the turn to the intercept path. The altitude lost in the turn (∆ℎ∆𝜙) was calculated using Equation 

24, which uses 𝐺𝑅𝜃 from Equation 13. 

𝜙1 

𝜙2 
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∆ℎ∆𝜙 =
𝑑∆𝜙

𝐺𝑅𝜃
          (24) 

 

The remaining distance to the landing site (𝑑𝑖𝑛𝑡) on the intercept heading was then 

calculated using Equation 25. 

𝑑𝑖𝑛𝑡 = √𝑑𝑐𝑙
2 − 𝑟2         (25) 

 

The altitude lost during the final glide on the intercept heading was calculated using 

Equation 26. 

 

∆ℎ𝑖𝑛𝑡 =
𝑑𝑖𝑛𝑡

𝐺𝑅
          (26) 

 

The last step was to calculate the final altitude (ℎ𝑓) upon arrival at the landing site using 

Equation 27. 

 

ℎ𝑓 = ℎ − ∆ℎ∆𝜙 − ∆ℎ𝑖𝑛𝑡        (27) 

 

The airplane characteristic that remained constant for all calculations was the airplane’s 

best range glide speed: 𝑣𝐺 = 100 𝐾𝐼𝐴𝑆. This was adjusted to 𝑇𝐴𝑆 as appropriate to the altitude 

for each calculation.  

 

The first example calculations are based upon an airplane with an 𝐺𝑅 of 10. The example 

altitude was 6,000 𝑓𝑡 with a landing site 9 𝑁𝑀 away. In a straight-line glide, this airplane would 

be capable of gliding to a distance of 9.87 𝑁𝑀 over flat terrain. The airplane’s heading (𝜙1) for 

the example calculation, was 360°, the bearing to the first landing location (𝜙2) was set to 010°, 
and the first bank angle (𝜃) used during the turn was 10°. For this glide, the distance travelled 

while turning (𝑑∆𝜙) was 0.18 𝑁𝑀. The distance traveled after the turn on the intercept course 

(𝑑𝑖𝑛𝑡) was 8.83 𝑁𝑀 for a total distance (𝑑𝑇) of 9.01 𝑁𝑀, and the final altitude upon arrival at 

the landing location (ℎ𝑓) was 529 𝑓𝑡.  

 

The scenarios evaluated were for three 𝐺𝑅𝑠 (8, 10, and 12); four altitude and distance to 

the landing location combinations per 𝐺𝑅 (e.g., for 𝐺𝑅 = 8, 1,000 𝑓𝑡 𝐴𝐺𝐿/1.2 𝑁𝑀; 

2,500 𝑓𝑡 𝐴𝐺𝐿/3 𝑁𝑀; 5,000 𝑓𝑡 𝐴𝐺𝐿/6 𝑁𝑀; and 10,000 𝑓𝑡 𝐴𝐺𝐿/12 𝑁𝑀); bearings to the 

landing site ranging from 10° to 175°; and bank angles ranging from 10° to 80°. Results for the 

example scenario (𝐺𝑅 = 10; 6,000 𝑓𝑡 𝐴𝐺𝐿/9 𝑁𝑀; 𝜙2 = 10°) throughout the range of bank 

angles are presented in Table 1. The data shows that any bank angle from 10° to 80° would 

result in a similar altitude upon arrival at the destination located on a 10° bearing from the 

beginning of the glide; however, lower bank angles provided a slight advantage with the least 

altitude lost from a 10° bank angle turn. 
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Table 1 

Glide Calculations with: 𝐺𝑅 = 10; 6,000 𝑓𝑡 𝐴𝐺𝐿/9 𝑁𝑀; and 𝜙2 = 10° 
 

𝜃 (°) 𝑑∆𝜙 (𝑁𝑀) ∆ℎ∆𝜙 (𝑓𝑡) 𝑑𝑖𝑛𝑡 (𝑁𝑀) ℎ𝑓 (𝑓𝑡) 

10 0.18 108.0 8.83 529.4 

20 0.08 54.6 8.92 528.0 

30 0.05 37.3 8.95 526.4 

40 0.04 29.0 8.96 524.7 

50 0.03 24.4 8.97 522.8 

60 0.02 21.8 8.98 520.7 

70 0.01 20.5 8.99 518.1 

80 0.01 21.7 8.99 513.7 

 

For this scenario, the lower bank angle’s preservation of 𝐺𝑅 outweighed the additional 

travel distance required in such a shallow turn. For comparison, the data for a glide to a landing 

location on a bearing of 90° from the airplane’s original heading are presented in Table 2. The 

glide to this landing location was also possible with a turn using any of the tested bank angles; 

however, the lowest bank angle was no longer ideal. The additional air distance that 

accompanied the lower bank angle turns resulted in more altitude lost upon arrival at the 

destination. The optimal bank angle appears to be very close to 50° in this case. Further 

comparison is presented using the data for a glide to a landing location on a bearing of 150° 
from the airplane’s original heading, as presented in Table 3. 

 

Table 2 

Glide Calculations with: 𝐺𝑅 = 10; 6,000 𝑓𝑡 𝐴𝐺𝐿/9 𝑁𝑀; and 𝜙2 = 90° 
𝜃 (°) 𝑑∆𝜙 (𝑁𝑀) ∆ℎ∆𝜙 (𝑓𝑡) 𝑑𝑖𝑛𝑡 (𝑁𝑀) ℎ𝑓 (𝑓𝑡) 

10 1.68 1038.7 7.95 133.9 

20 0.78 506.5 8.51 325.8 

30 0.49 342.2 8.69 377.2 

40 0.33 264.8 8.79 395.5 

50 0.23 222.0 8.85 400.2 

60 0.16 197.2 8.90 397.0 

70 0.10 185.2 8.93 386.7 

80 0.06 195.3 8.96 357.8 

 

Table 3 

Glide Calculations with: 𝐺𝑅 = 10; 6,000 𝑓𝑡 𝐴𝐺𝐿/9 𝑁𝑀; and 𝜙2 = 150° 
𝜃 (°) 𝑑∆𝜙 (𝑁𝑀) ∆ℎ∆𝜙 (𝑓𝑡) 𝑑𝑖𝑛𝑡 (𝑁𝑀) ℎ𝑓 (𝑓𝑡) 

10 2.82 1737.3 8.49 -895.2 

20 1.31 846.8 8.76 -166.9 

30 0.81 571.6 8.85 53.1 

40 0.56 442.1 8.89 153.5 

50 0.39 370.5 8.93 206.3 

60 0.27 329.0 8.95 233.8 

70 0.17 308.9 8.97 242.8 

80 0.09 325.7 8.98 216.7 
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Glides to this landing location were not possible using turns at all bank angles. Although 

10° and 20° banked turns preserve a higher 𝐺𝑅, the additional flight distance required with such 

shallow turns resulted in excessive altitude loss and the inability to reach the landing location, as 

revealed by the negative final altitudes. Of the bank angles that enabled the airplane to reach its 

destination, the optimum bank angle for this scenario was approximately 70°. Figure 11 presents 

curves of final altitude versus bank angle for each landing destination located at a different 

bearing from the airplane’s original heading.  

 

Optimum Bank Angles 

 

In order to identify the optimum bank angle from each curve, second-order polynomials 

were fitted to the data for the three bank angles that resulted in the highest final altitudes for each 

glide to a specific destination, examples of which are shown in Figure 12 for final destinations 

located 10° to 90° from the airplane’s original heading. Using the destination at 𝜙2 = 90° from 

Figure 12 as an example, its second-order polynomial curve fit resulted in Equation 28. 

 

ℎ𝑓 = −0.0395908 ∙ 𝜃2 + 4.0360093 ∙ 𝜃 + 297.4067019    (28) 

 

The derivative of Equation 28 was set equal to zero and solved for 𝜃, which revealed that 

the optimum bank angle for this scenario was 51°. The process of differentiating a curve’s 

polynomial, setting it equal to zero, and solving for the optimum bank angle was conducted for 

each curve. The results were then visualized, as seen in Figure 13 for the 𝐺𝑅 = 10; 

6,000 𝑓𝑡 𝐴𝐺𝐿/9 𝑁𝑀 scenario. 
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Figure 11 

Final Altitude vs. Bank Angle for 𝐺𝑅 = 10; 6,000 𝑓𝑡 𝐴𝐺𝐿/9 𝑁𝑀 

 

 
Figure 12 

Final Altitude vs. Bank Angle Peaks for 𝐺𝑅 = 10; 6,000 𝑓𝑡 𝐴𝐺𝐿/9 𝑁𝑀; and 𝜙2: 10° − 90°  
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Figure 13 

Optimum Bank Angle vs. Bearing to Destination for 𝐺𝑅 = 10; 6,000 𝑓𝑡 𝐴𝐺𝐿/9 𝑁𝑀 

 

 
Results 

 

 Upon completion of the process of calculating the final altitude upon arrival at the 

landing location (if possible) and identification of the optimum bank angle for each scenario, the 

data was compiled and in three plots corresponding to each of the three 𝐺𝑅 values as presented 

in Figures 14, 15, and 16. 
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Figure 14 

Optimum Glide Angles for 𝐺𝑅 = 8 

 
Figure 15 

Optimum Glide Angles for 𝐺𝑅 = 10 
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Figure 16 

Optimum Glide Angles for 𝐺𝑅 = 12 

 
The data clearly shows that the optimum bank angle (𝜃) resulting in the least altitude lost 

in a power-off glide is a strong function of the bearing to the landing location (𝜙) and a weaker 

function of the airplane’s 𝐺𝑅 and its altitude at the beginning of the glide (ℎ).  

  

For all three 𝐺𝑅𝑠, the optimum 𝜃 increases as 𝜙 increases for 𝜙 ≥ 35°. Although the 

curves are highly nonlinear, in this range of 𝜙, two distinguishable regions appear that can be 

linearly approximated. Upon visual inspection, the domain of 35° ≤ 𝜙 < 120° exhibits a nearly 

linear relationship. Above 120° the curves exhibit another nearly linear relationship, albeit with a 

lower slope. In the domain 35° ≤ 𝜙 < 120°, the weaker functions of altitude and 𝐺𝑅 can be 

seen. For all 𝐺𝑅𝑠 tested, glides from the lowest calculated altitude have up to a 5° higher 

optimum 𝜃 when compared to the glides from higher altitudes, and for glides from the same 

altitude, as the airplane’s 𝐺𝑅 increased, so to did the optimum 𝜃. This relationship was mostly 

limited to 𝜙 ≥ 120° where the difference between optimum 𝜃 from the smallest to the largest 

𝐺𝑅 was approximately 5°. Using the aggregated data for glides from 1,000 𝑓𝑡, (arguably the 

most critical altitude tested) the linear relationship for 35° ≤ 𝜙 < 120° was identified and is 

presented in Equation 29. 

 

𝜃 ≅ 0.5𝜙 + 10°         (29) 

 

Glides from higher altitudes require a slight modification of Equation 29 to account for 

the effect of altitude. Equation 30 approximates the effects of altitude (at least for the altitudes 

used in these calculations) on the optimum 𝜃, where ℎ𝑘 is the airplane’s altitude at the beginning 

of the glide in thousands of feet.  
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The linear relationship for 𝜙 ≥ 120° was also identified using the aggregated data for 

glides from 1,000 𝑓𝑡 and is presented in Equation 31. 

 

𝜃 ≅ 0.1𝜙 + 52°         (31) 

The altitude functionality in this domain is much weaker than that in the previous domain 

and is approximated in Equation 32. 

 

𝜃 ≅ 0.1𝜙 +
1°

ℎ𝑘
+ 51°         (32) 

 

The 𝐺𝑅 functionality in this domain is slightly more prominent than was demonstrated at 

lower values of 𝜙. This addition is approximated using Equation 33. 

 

𝜃 ≅ 0.1𝜙 +
1°

ℎ𝑘
+ (

𝐺𝑅−8

2
) ° + 51°       (33) 

 

An example glide calculation using Equations 30 and 33 is as follows. Suppose the 

airplane being flown has a published 𝐺𝑅 of 10. Equation 30 remains unchanged, but Equation 33 

is updated as shown in Equation 34. 

 

𝜃 ≅ 0.1𝜙 +
1°

ℎ𝑘
+ (

10−8

2
) ° + 51° = 0.1𝜙 +

1°

ℎ𝑘
+ 52°    (34) 

 

Adjustment of Equation 33 to Equation 34 could take place well before the flight begins 

since the 𝐺𝑅 is a published value for the airplane. At the time of an engine failure, the 

closest/best landing location is found to be on a bearing of 90° (either to the left or to the right) 

from the airplane’s heading. This means that Equation 30 should be used. If the airplane is at 

2,500 𝑓𝑡 𝐴𝐺𝐿, the calculation of the optimum bank angle is shown in Equation 35. 

 

𝜃 ≅ 0.5(90°) +
5°

2.5
+ 5° = 52°       (35) 

  

The regions of data in the domain for 𝜙 < 35°, the optimum bank angle exhibits an 

inverse functionality with 𝜙 and is much more sensitive to altitude and 𝐺𝑅. For altitudes up to 

2,500 𝑓𝑡 𝐴𝐺𝐿 for all 𝐺𝑅𝑠, there is a value of 𝜙 below which optimum 𝜃 increases as 𝜙 

decreases. As an example, the 2,500 𝑓𝑡 𝐴𝐺𝐿 curve on the 𝐺𝑅 = 8 graph (Figure 14) shows a 

minimum 𝜃 of 25° for 𝜙 = 35°, below which the optimum 𝜃 increases to 45° for the lowest 

calculate bearing, 𝜙 = 10°. All of the curves for glides at or below 2,500 𝑓𝑡 𝐴𝐺𝐿 exhibit the 

same tendency, with the bearing associated with the minimum bank able decreasing as both 

altitude and 𝐺𝑅 increase. At 𝜙 = 10° the 𝐺𝑅 = 8 and 𝐺𝑅 = 10 data shows an optimum 𝜃 of 

45°, while the 𝐺𝑅 = 12 data shows an optimum 𝜃 of only 35°. At the next altitude for 𝜙 = 10°, 

all 𝐺𝑅𝑠 have an optimum 𝜃 of 25°. The highest two altitudes, for which calculations were made, 

have optimum 𝜃𝑠 that is less than 10° at 𝜙 = 10°. Given the nature of the method of identifying 

the optimum 𝜃 presented in a previous section, no optimum value could be identified. The blue 

dashed curves in Figures 14-16 extending from the higher altitudes curves is the author’s 

estimated curve fit taking into consideration 1) the shape of the lower altitudes’ curves and 2) the 

fact that no bank angle is necessary for a landing location on a bearing of 0° (the origin). No 
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simple functional relationship is obvious from the data in the domain of 𝜙 < 35°, so a different 

view of the data is necessary.  

  

Figures 14-16 represent the optimum values of 𝜃 that will minimize the altitude lost for a 

glide on any bearing to a landing location (𝜙); however, the curves do not make clear whether or 

not glides using the optimum values of 𝜃 will result in a positive altitude at the landing location. 

The glides might not be possible. Tables 4, 5, and 6 present the optimum values of 𝜃 along with 

whether or not the glide would be possible (ℎ𝑓 ≥ 0 𝑓𝑡) for all glides with 𝐺𝑅𝑠 of 8, 10, and 12 

respectively. 

 

Table 4 

Optimum 𝜃 with 𝐺𝑅 = 8 

 
𝜙 (°) 𝜃 (°, 1𝑘, 1.2𝑁𝑀) 𝜃 (°, 2.5𝑘, 3𝑁𝑀) 𝜃 (°, 5𝑘, 6𝑁𝑀) 𝜃 (°, 10𝑘, 12𝑁𝑀) 

10 45.0 25.0 <10 <10 
20 35.0 10.4 <10 <10 
30 25.0 21.3 20.6 20.3 
40 25.0 25.0 24.7 24.5 
50 34.1 31.9 31.0 30.6 
60 40.3 36.7 35.5 34.8 
70 44.9 42.4 41.4 40.9 
80 50.5 47.0 45.8 45.3 
90 54.6 51.8 50.8 50.3 

100 58.3 55.6 54.7 54.3 
110 61.4 59.0 58.2 57.8 
120 64.1 61.9 61.2 60.8 
130 65.6 65.1 64.5 63.5 
140 66.5 65.7 65.5 65.3 
150 67.3 66.6 66.3 66.2 
160 68.1 67.4 67.1 67.0 
170 68.7 68.1 67.9 67.8 
175 69.0 68.4 68.2 68.1 

Note. Shaded values of θ indicate that the glide resulted in only negative altitudes; therefore, it was not possible. Blue values of θ indicate that the 

glide was possible; however, at least the lowest, if not several of the lowest, values of θ resulted in failed glides. Green values of θ indicate that 

the glide was possible; however, at least the lowest θ, if not several of the lowest, and at least the highest values of θ, if not several of the highest, 

resulted in failed glides. Black values of θ indicate that the glide was possible for all θ (10° − 80°). 

 

Table 5 

Optimum 𝜃 with 𝐺𝑅 = 10 

 
𝜙 (°) 𝜃 (°, 1𝑘, 1.5𝑁𝑀) 𝜃 (°, 2.5𝑘, 3.75𝑁𝑀) 𝜃 (°, 5𝑘, 7.5𝑁𝑀) 𝜃 (°, 10𝑘, 15𝑁𝑀) 

10 45.0 25.0 <10 <10 
20 25.0 <10 <10 <10 
30 25.0 21.0 20.5 20.2 
40 27.4 24.9 24.6 24.5 
50 33.5 31.6 30.9 30.6 
60 39.3 36.3 35.3 34.8 
70 45.8 42.1 41.4 41.0 
80 49.8 46.9 45.9 45.4 
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90 54.8 51.9 51.1 50.7 
100 58.4 56.0 55.2 54.8 
110 61.9 59.8 59.1 58.7 
120 64.9 63.1 62.5 62.1 
130 66.3 65.1 65.1 65.0 
140 67.5 66.7 66.4 66.3 
150 68.7 67.9 67.6 67.5 
160 69.6 68.9 68.7 68.5 
170 70.5 69.8 69.6 69.5 
175 70.9 70.3 70.1 70.0 

Note. Shaded values of θ indicate that the glide resulted in only negative altitudes; therefore, it was not possible. Blue values of θ indicate that the 

glide was possible; however, at least the lowest, if not several of the lowest, values of θ resulted in failed glides. Green values of θ indicate that 

the glide was possible; however, at least the lowest θ, if not several of the lowest, and at least the highest values of θ, if not several of the highest, 

resulted in failed glides. Black values of θ indicate that the glide was possible for all θ (10° − 80°). 
 

Table 6 

Optimum 𝜃 with 𝐺𝑅 = 12 

 
𝜙 (°) 𝜃 (°, 1𝑘, 1.8𝑁𝑀) 𝜃 (°, 2.5𝑘, 4.5𝑁𝑀) 𝜃 (°, 5𝑘, 9𝑁𝑀) 𝜃 (°, 10𝑘, 18𝑁𝑀) 

10 35.0 25.00 <10 <10 
20 25.0 <10 <10 <10 
30 22.2 20.8 20.4 20.1 
40 26.5 24.8 24.5 24.4 
50 33.0 31.4 30.8 30.5 
60 38.5 36 35.2 34.8 
70 45.2 42 41.3 41.0 
80 49.2 46.8 45.9 45.5 
90 54.5 52 51.3 50.9 

100 58.3 56.2 55.5 55.1 
110 62.2 60.3 59.7 59.4 
120 65.4 63.9 63.3 63.0 
130 66.9 65.1 65.1 65.6 
140 68.5 67.6 67.4 67.2 
150 69.9 69.1 68.8 68.7 
160 71.1 70.4 70.1 70.0 
170 72.2 71.5 71.3 71.2 
175 72.7 72 71.8 71.7 

Note. Shaded values of θ indicate that the glide resulted in only negative altitudes; therefore, it was not possible. Blue values of θ indicate that the 

glide was possible; however, at least the lowest, if not several of the lowest, values of θ resulted in failed glides. Green values of θ indicate that 

the glide was possible; however, at least the lowest θ, if not several of the lowest, and at least the highest values of θ, if not several of the highest, 

resulted in failed glides. Black values of θ indicate that the glide was possible for all θ (10° − 80°). 
 

Values in the table are coded using shading and text color. Shaded cells indicate that 

glides from those altitudes and to those bearings are not possible. Blue text indicates that the 

glides are possible; however, they are only possible when using higher bank angles. Turning with 

at least the lowest bank angle won’t allow the airplane to reach its destination. Green text 

indicates that the glides are possible but not at the lowest or the highest bank angles. It indicates 

that several of the low and high bank angles will result in unsuccessful glides. Black text 

indicates that glides are possible from those altitudes and to those bearings and that they are 

possible throughout the range of tested bank angles (10° − 80°). 
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From inspection of the tables, an obvious and expected result is that increased 𝐺𝑅𝑠 

provide more gliding options. Another obvious result is that within one 𝐺𝑅′𝑠 data (i.e., Table 4), 

higher altitudes provide more gliding options. The data for glides from altitudes up to 2,500 𝑓𝑡 

for all 𝐺𝑅𝑠 shows that the lowest bank angles should be avoided for glides to destinations at low 

bearings, and glides to the locations at higher bearings (if possible) are only possible when 

avoiding the lowest and the highest bank angles.  

 

Recall that Equation 30 applies to 35° ≤ 𝜙 < 120°, and Equation 33 applies to 𝜙 ≥
120°. The first three rows of Tables 4-6 are for 𝜙 < 35°. The majority of glides described by 

these rows are optimized at extremely low bank angles but will still be possible at high bank 

angles (black text). An approximate functional relationship in this domain of low bearings is 

presented in Equation 36. 

 

𝜃 ≅ 𝜙 − 10°          (36) 

 

This equation only applies to glides from altitudes at or above 2,500 𝑓𝑡 and for bearings of no 

less than 20°. The critical glides are from the lower altitudes and bearings, located in the upper 

left corner of the tables. These glides aren’t possible when using the lowest bank angles and are 

optimized at bank angles of up to 45°. The reason for this is that the lowest bank angles have 

high turn radii and will not allow an airplane to reach an intercept path to the landing location. A 

turn must be tighter to achieve an intercept path when the landing location is so close. These 

findings are in agreement with those of Rogers (1995) for low-altitude gliding turns. Equation 37 

presents the criteria that enable a turn to an intercept course to be possible, where 𝑟 is the turn’s 

radius from Equation 15 and 𝑑 is the airplane’s distance from the landing location. 

 

𝑟 ≤
𝑑

2
           (37) 

 

The most critical of the scenarios tested was a glide from 1,000 𝑓𝑡 to a landing destination on a 

bearing of 10° with an 𝐺𝑅 of 10 or less. These glides have an optimum bank angle of 45° and 

are not even possible at bank angles of less than 40° due to the inability of lower banked turns to 

achieve an intercept course. No simple functional relationship for optimum bank angle was 

developed for gliding turns to locations within the critical domains shown in the tables due to the 

highly nonlinear relationship between 𝜃 and 𝑟 in Equation 15; however, a 45° banked turn will 

not only enable a successful glide in the critical domains, it will also work for glides from higher 

altitudes in this domain for any of the tested 𝐺𝑅𝑠. 

 

Conclusions 

 

 It is common (and required) knowledge among pilots that in order to maximize power-off 

glide distance an airplane must be flown at its 𝑣𝐺. It seems to be less common (and not required) 

knowledge among pilots that an airplane’s 𝑣𝐺 is a function of its weight and that the published 

𝑣𝐺 only applies to the airplane at its 𝑀𝑇𝑂𝑊. Adjusting a published 𝑣𝐺 using Equation 11 is 

necessary to ensure that the highest 𝐺𝑅 (𝑎. 𝑘. 𝑎.  𝐿 𝐷⁄ ), and hence the maximum range, is 

achieved. 
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Even less known among pilots is that when a turn is required to make it to a safe landing 

location in a power-off glide, the bank angle used in the gliding turn can be optimized for 

maximum glide performance. It was shown that for glides requiring a turn to a landing location 

with a bearing greater than or equal to 120° from the airplane’s heading, Equation 33 

(reproduced here) provides a simplified approximation to the turn’s optimum bank angle.  

 

𝜃 ≅ 0.1𝜙 +
1°

ℎ𝑘
+ (

𝐺𝑅−8

2
) ° + 51°       (33) 

 

The equation is simplified using an airplane’s 𝐺𝑅, after which the only inputs are the bearing to 

the landing location and the airplane’s 𝐴𝐺𝐿 altitude in thousands of feet. Due to the simple 

nature of Equation 33, it is perfectly suitable for mental math. As an example, an airplane with a  

𝐺𝑅 or 10, which can be incorporated into the equation beforehand, loses its engine at 3,000 𝑓𝑡 

with the best landing location on a 150° bearing. The simple nature of Equation 33 (e.g., 

multiplying by 0.1 only requires that the bearing’s decimal point be moved once to the left) 

quickly reveals a 67° optimal bank angle for the turn. This example exposes the issue of bank 

angles exceeding 60°. CFR 14, Part 23.3 (2011) prohibits normal category airplanes from being 

flown at bank angles that exceed 60°; however, CFR 14 Part 91.3 (1989) allows a pilot in 

command to deviate from other regulations in order to deal with an emergency. In-flight engine 

failures are definitely emergencies. If turning to a safe landing destination during an engine-out 

glide is best performed with a bank angle higher than 60°, regulations won’t prevent it. Concerns 

associated with high bank angle turns are related to pilot skill while operating at unusual 

attitudes and high load factors. Pilot skills will be left to training and experience. The normal 

category load factor limit is an issue at bank angles above 74° for constant altitude turns. This is 

not an issue for gliding turns, since 1) load factors are lower when not maintaining altitude and 

2) all of the optimum bank angles were less than 72°. 
 

For gliding turns to landing locations with bearings between 35° and 120°, Equation 30 

(reproduced here) provides an even simpler (independent of 𝐺𝑅) approximation to the turn’s 

optimum bank angle.  

 

𝜃 ≅ 0.5𝜙 +
5°

ℎ𝑘
+ 5°         (30) 

 

As an example, an airplane loses its engine at 3,000 𝑓𝑡 with the best landing location on 

a 60° bearing. The simple nature of Equation 30 quickly reveals a 37° optimal bank angle for the 

turn.  

 

For gliding turns to landing locations with bearings of less than 35°, the optimum bank 

angle is approximated by Equation 36; however, the equation is limited to certain bearings and 

altitudes. Due to the critical low-bearing, low-altitude domain that has high optimum bank 

angles, all gliding turns to landing locations with bearings of less than 35° would be successful, 

albeit not optimized, when conducted with a bank angle of 45°. 
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 Recommendations 

 

 Using the information presented in this paper, the majority of which is the result of 

original research into optimum bank angles to be used during power-off glides, the author makes 

the following recommendations. 

 

1. Digital avionics and flight management systems should incorporate real-time glide 

performance information to include: 

a. Displays of weight-corrected 𝑣𝐺 using 1) an initial weight entered at the 

beginning of a flight by the pilot and 2) fuel flow measurements, 

b. Real-time glide range corrected for range losses due to turns in all directions 

using optimal bank angles, and 

c. The optimum bank angle to use during a power-off glide to an intercept course for 

a suitable landing location 1) that has been identified and selected by the pilot or 

2) that has been selected by the system and presented to the pilot. 

 

2. Pilot education/instruction and reference materials (i.e., course content, handbooks, and 

manuals) should present more detailed power-off glide performance information 

including: 

a. Use of Equation 11 for weight-correcting 𝑣𝐺 along with recommending the 

options of 1) calculating the minimum possible 𝑣𝐺 corresponding to the airplane’s 

lowest possible weight for interpolation in-flight or 2) creating a graph similar to 

Figure 4 for quick reference in flight and 

b. Use of rule-of-thumb equations/guides for calculating optimum bank angle to 

include 1) Equation 33 for glides to bearings above 120°, 2) Equation 30 for 

glides to bearings between 35° and 120°, and 3) 45° for glides to bearings less 

than 35°. 
 

3. Flight training should include the practice of in-flight power-off glide scenarios that 

include 1) the identification of safe landing locations within glide range, 2) the 

calculation of optimum bank angles for glides to different bearings, and 3) turns to 

intercept courses.  
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