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Commercial air travel in the United States has grown significantly in the past decade. While the reasons for air 

traffic delays can vary, the weather is the largest cause of flight cancellations and delays in the United States. Air 

Traffic Control centers utilize Traffic Management Initiatives such as Ground Stops and Expect Departure 

Clearance Times (EDCT) to manage traffic into and out of affected airports. Airline dispatchers and pilots monitor 

EDCTs to adjust flight blocks and flight schedules to reduce the impact on the airline’s operating network. The use 

of time-series data mining can be used to assess and quantify the impact of surface weather variables on EDCTs. A 

major hub airport in the United States, Charlotte Douglas International Airport, was chosen for the model 

development and assessment, and Vector Autoregression and Recurrent Neural Network models were developed. 

While both models were assessed to have demonstrated acceptable performance for the assessment, the Vector 

Autoregression outperformed the Recurrent Neural Network model. Weather variables up to six hours before the 

prediction time period were used to develop the proposed lasso regularized Vector Autoregression equation. 

Precipitation values were assessed to be the most significant predictors for EDCT values by the Vector 

Autoregression and Recurrent Neural Network models. 
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Commercial air travel in the United States (US) has grown significantly in the past 

decade (2010-2019) (Department of Transportation, 2020). An increase in air traffic in the 

National Airspace System (NAS) leads to delays and higher operating costs for airlines (Federal 

Aviation Administration [FAA], 2018). As per the FAA, flight delays are documented under five 

causes which are carrier delay, late arrival delay, NAS delay, security delay, and weather delay. 

Weather delays account for the largest cause of flight delays in the US and are the factor for 

nearly 70% of flight delays in the US (FAA, 2021). Airlines operate with constrained resources 

and schedule flights based on fixed block times (Sohoni et al., 2017). Delays lead to block time 

deviations, which can significantly affect the operating network and dispatch operations of an 

airline. The cost of an hour of flight delay is estimated to be about $1,400 to $4,500 per flight for 

an airline with the value of passenger time estimated to be in a range of $35 to $63 per hour 

(FAA, 2021). Airline dispatchers rely on updated air traffic information such as Expect 

Departure Clearance Times (EDCT) to plan and manage flights and mitigate disruptions to the 

overall airline network.  

A large number of airlines operate in a hub-and-spoke network where the airline's 

operating network is characterized by single hub or multiple hub airports that are connected to 

several spokes or connecting airports (Parsa et al., 2019). Airlines develop schedules to ensure 

passengers traveling within the network can connect to different flights through different hubs 

(Abdelghany & Abdelghany, 2019). Airlines schedule flights to minimize connection times for 

passengers and ensure efficiency in the hub airports. For airlines operating in a hub-and-spoke 

network, EDCT for flights arriving into a hub airport can significantly affect the operations of 

the entire network due to passenger misconnections, lack of ground equipment, and delays to 

subsequent flights for the delayed aircraft. EDCTs usually affect flights at specific time banks, 

which are affected by factors including but not limited to weather, airport capacity constraints, or 

runway closures (FAA, 2009). Extended EDCTs can lead to extensive delays, ground stops, 

flight crew limiting on flight duty periods, and flight cancellations. As a possible mitigation tool, 

delay forecasting is used by airline management to predict the impact of independent factors 

such as weather events on whether a flight will be delayed (Etani, 2019; Goodman & Griswold, 

2019). Airlines invest considerable resources in improving the efficiency of their operational 

network. An accurate delay forecasting model, such as the model developed in this study, can aid 

an airline in forecasting EDCTs and planning. 

 

Literature Review 

 

Traffic Management Initiatives (TMI) and Expect Departure Clearance Time (EDCT) 

  

Traffic Management Initiatives (TMIs) are used by Air Traffic Control (ATC) to manage 

air traffic based on excess demand or a lowered acceptance rate at a particular airport (FAA, 

2009). Terminal TMIs are airport-specific initiatives that impact arrivals into a particular airport 

(FAA, 2009). Some of the common TMIs are Ground Delay Programs (GDPs), Airspace Flow 

Programs (AFPs), EDCT, and Ground Stop (GS) (FAA, 2009). Non-compliance with a TMI can 
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lead to holding and diverting for aircraft as well as extensions of GDPs, AFPs, and GSs, which 

leads to further delays due to the overabundance of airplanes, unused slots at destination airports, 

and increased volume in the airspace (FAA, 2009). 

 

EDCT, a type of TMI, is a runway release time assigned to an aircraft by ATC due to 

applicable TMIs, which require the aircraft to hold on the ground at their departure airport (FAA, 

2009). When EDCTs are assigned to aircraft, the flight crew is given a time window within 

which the flight is expected to depart (FAA, 2009). EDCTs can be changed based on the 

conditions at the affected airports, such as changing weather conditions and airport acceptance 

rate (FAA, 2009). Airline dispatchers monitoring their respective flights provide updated EDCTs 

directly to company personnel, while pilots can also receive their modified EDCT times from the 

ATC at the departure airport (FAA, 2009). Like all TMIs, EDCTs are highly influenced by the 

weather conditions at the airport the flights are scheduled to arrive at (Swot et al., 2018).  

 

Flight Delays Forecasting in Aviation 

 

Flight delay forecasting can be operationalized through different statistical techniques. 

However, due to the advancements in machine learning algorithms, various studies have focused 

on forecasting flight delays utilizing machine learning techniques. Machine learning techniques 

have been demonstrated to be effective for flight delays prediction (Belcastro et al., 2016; Khan 

et al., 2021; Khanmohammadi et al., 2016; Rebollo & Balakrishnan, 2014; Yu et al., 2019). 

Khan et al. (2021) utilized a hierarchical integrated machine learning model to predict the flight 

delays and flight durations for an airline based in Hong Kong. The authors utilized a dataset 

provided by an airline that consisted of flight data for 19,105 flights and contained data on the 

runway configuration for the departure airports, weather variables such as atmospheric pressure, 

air temperature, altitude for flight, speed of the flight, ramp weight of the flight, and type of 

aircraft. The dataset was regarded as a cross-sectional dataset, and the delays were predicted as a 

classification problem. The authors developed a Convolutional Neural Network which was 

named a hyperparameter-free cascade principal component least-squares neural network (hyp-

free CPCLS). The hyp-free CPCLS was capable of determining the hyperparameters, such as the 

number of neurons and layers, without the need for manual hyperparameter tuning. The model 

was designed due to the highly unbalanced, high dimensional, and highly skewed dataset that 

was used for the modeling. The authors determined that “categories such as passenger and 

baggage handling, aircraft and ramp handling, air traffic flow restriction, and government 

authority, and reactionary and miscellaneous are the main reason for airline departure delay" 

(p.21). While the study by Khan et al. (2021) contributed in literature to modeling using skewed, 

high dimensional, and unbalanced datasets through re-sampling and feature engineering 

techniques, Rebollo & Balakrishnan (2014) focused on capturing the spatial and temporal 

dependency of departure delays data. While departure delays research focuses highly on local 

spatial variables for the departure airports, the authors focused on new network delays variables 

that could impact the entire NAS. The authors defined spatial variables such as NAS Delay State 

and Type of Delays Day along with temporal variables such as Time of the Day, Month of the 

Year, and Day of the Week. The authors' work was considered novel due to the focus on 

including variables that not only impacted the airports for analysis but also impacted the NAS at 

large. The final model created was a Random Forest model for a 2-hour forecasting period with 

an average test error of 19%.  
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Yu et al. (2019) utilized a combination of Deep Belief Networks and Support Vector 

Repressors to predict flight delays on city-pair routes in China. Yu et al. (2019) explained 

different feature selection techniques that can be used to develop robust prediction models from 

high dimensional data. The authors replaced macro-level factors that are commonly seen in flight 

delay prediction models with specific micro-level influential factors such as aircraft capacity, 

boarding options, number of passengers in the flight, airline properties, and delay of previous 

flight for the aircraft. Yu et al. (2019) emphasized the need for feature selection techniques to 

reduce the dimensionality of datasets by using two conventional filter methods like the 

Correlation Coefficient Method and the Standard Deviation Selection Method. The final Deep 

Belief Network-Support Vector Repressor model was able to predict flight delays with a Mean 

Absolute Error of 8.41, Root Mean Squared Error of 12.65, and Coefficient of Determination of 

0.93. The authors determined that air traffic control, delay of the previous flight, and air route 

situation were the most significant independent variables for the model.  

 

Belcastro et al. (2016) utilized data mining to predict arrival delays due to weather 

conditions. The authors of the study utilized flight information such as origin airport, destination 

airport, scheduled departure and arrival times, and weather observations at the departure and 

arrival airports. The arrival delays prediction was processed as a classification task. The authors 

developed Decision Tree, Support Vector Machine, Random Forest, Stochastic Gradient 

Descent, and Naïve Bayes classifiers. The authors evaluated the scalable parallel version of the 

Random Forest to be the best predictor that could predict arrival delays at a threshold of 60 

minutes with an accuracy of 85.6% and a recall of 86.9%. The authors also tested the model with 

only flight information as predictors and removed the weather conditions predictors, which 

reduced the model accuracy to 69.1%. In another similar study, Khanmohammadi et al. (2016) 

examined literature in the field of machine learning models to predict flight delays and examined 

the role of nominal independent variables in skewing model performance. Khanmohammadi et 

al. (2016) proposed an Artificial Neural Network that utilized a new type of multi-level input 

layer to capture the relationship of nominal independent variables. The authors designed a Neural 

Network model with a multi-level input layer designed for defect of module prediction. The 

model was deployed to predict flight delays at New York-John F. Kennedy International Airport 

and was compared to a Gradient Descent Backpropagation model with the same dataset. Some of 

the nominal independent variables used for the model included the day of the month, day of the 

week, origin airport, delay at departure at the origin airport, and scheduled departure time. The 

authors evaluated that model developed was robust to nominal independent variables and was 

able to predict the flight delays with a Root Mean Squared Error of 0.1366 as compared to 

0.1603 for the Gradient Descent Backpropagation model.  

 

Temporal Nature of Flight Delays 

 

As reviewed, machine learning techniques have been successfully utilized for flight delay 

prediction. However, flight delay data has been modeled differently by scholars. Flight delay 

data can be treated as cross-sectional data, time-series data, or even spatial data. Determining the 

data type and format is crucial while deciding the modeling strategy for a machine learning 

model. While Khan et al. (2021), Belcastro et al. (2016), Khanmohammadi et al. (2016), and Yu 

et al. (2019) modeled the data as cross-sectional, Rebollo & Balakrishnan (2014) modeled the 

flight delays utilizing the temporal and spatial dependencies of the variables. Time series 
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forecasting utilizing the temporal dependency of variables has been demonstrated to be an 

effective method for delay forecasting in aviation (Guvercin et al., 2021; Lan & Shangheng, 

2020). Guvercin et al. (2021) used a combination of time series clustering and time series 

forecasting techniques to build a prediction model to predict flight delays at 305 airports in the 

US. For the time series forecasting, the authors utilized “a combination of a regression and an 

Autoregressive Integrated Moving Average (ARIMA) model” (Guvercin et al., 2021, p. 1). As 

the study was not based on the data for a single airport, the authors needed to utilize a Clustered 

Airport Model approach to improve forecasting accuracy for the 305 airports. The authors 

evaluated that the ARIMA approach in combination with the Clustered Airport Model provided 

forecasting results comparable to forecasting results expected from a complex Long Short Term 

Memory (LSTM) neural network model. While Guvercin et al. (2021) utilized a clustered airport 

model to develop a prediction model that could be used for a large number of airports, Lan & 

Shangheng (2020) collected data from a single "large airport" for four years to develop a model 

to predict hourly departure delays (p.1). While the hourly departure delays variable contained 

continuous values, the authors utilized K-means clustering to cluster the delay variable into five 

categories or bins. For the prediction, the authors determined that Vector Autoregression (VAR) 

in comparison to Autoregressive Conditional Heteroskedasticity (ARCH) was an effective time 

series forecasting technique for delay forecasting. While Guvercin et al. (2021) and Lan & 

Shangheng (2020) were successful in utilizing autoregression models, Zen et al. (2021) utilized a 

deep graph-embedded LSTM neural network approach for airport delay prediction. A deep 

graph-embedded LSTM approach was preferable because the authors aimed to develop a model 

that was based on the data from 325 airports in the US. The authors described the use of the 

graph-embedded network as a "directed graph network with an airport as a node, a spatial 

distance weighted adjacency matrix and a demand weighted adjacency matrix are constructed, 

and the two are integrated to obtain a combined weighted adjacency matrix” (Zeng et al., 2021, 

p. 13). 

 

Machine Learning Approach for Delay Prediction 

 

The advancement of machine learning techniques has allowed their usage and 

deployment in tasks across different fields, including aviation. Carvalho et al. (2020) aimed to 

review the different approaches used by scholars for flight delay predictions from a data science 

perspective. The authors explored the use of machine learning techniques for flight delay 

prediction and concluded that the most popular machine learning techniques included k-Nearest 

Neighbors, Neural Networks, Support Vector Machine, Fuzzy Logics, and Random Forest. The 

choice of model depends on the prediction, purpose of the project, and data structure. For 

aviation delay prediction datasets, it is important to preserve the temporal dependencies of 

variables. Qu et al. (2020) demonstrated the use of Convolutional Neural Networks for time 

series flight delay prediction. For the modeling process, the authors fused meteorological data 

and concluded that flight delay prediction accuracy could be improved by up to 1% when using 

weather data in comparison to predictions by only using flight information. The authors utilized 

the Airline On-time Performance Database provided by the Bureau of Transportation Statistics in 

the US for the flight information and Local Climatological Data provided by the National 

Climate Data Center in the US. While Recurrent Neural Networks are mostly associated with 

temporal data, Convolutional Neural Networks, as standalone models or in conjunction with any 

other model, are common for time-series predictions due to their ability to extract the most 
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significant features. The authors utilized a Dual-channel Convolutional Neural Network and 

Squeeze and Excitation-Densely Connected Convolutional Network for the study. The Dual-

channel Convolutional Neural Network and Squeeze and Excitation-Densely Connected 

Convolutional Network were able to achieve accuracies of 92.1% and 93.19%, respectively.  

 

Research Questions 

 

This study aimed to answer the following research questions: 

 

RQ1: Can EDCT values be predicted for a large hub airport in the US using surface 

weather observations? 

 

RQ2: What variables are the most significant predictors of EDCT values? 

 

Significance of the Study 

 

The literature reviewed highlighted the viability and success of machine learning models 

in predicting different types of flight delays. The effect of surface weather on delays, including 

EDCTs, has been studied by scholars in the past (Belcastro et al., 2016; Qu et al., 2020). EDCT, 

just like other TMIs, is severely affected by weather and can disrupt traffic flow for an airport. 

The studies by Guvercin et al. (2021) and Lan & Shangheng (2020) demonstrated the 

effectiveness of time series autoregressive models in predicting flight delays. However, there is a 

significant gap in research in predicting EDCTs utilizing any type of statistical modeling, even 

though there is domain importance and need for such a prediction model. This study is an 

attempt to bridge the research gap by utilizing surface weather variables to develop time series 

models to predict EDCT values for a major hub airport. Time series models will allow the model 

to retain the temporal dependency of the endogenous variables, which has been demonstrated to 

be an important concept in published literature.  

 

An EDCT prediction model will allow airline management to make better informed 

short-term operations decisions such as contingency fuel and resource and gate allocations. 

EDCT prediction will also help airline management with customer service as longer EDCT 

predictions can be treated as a direct indication of higher arrival delays at a hub airport which 

can lead to passengers' missed connections. Additionally, unlike delay parameters such as arrival 

delays, block delays, and departure delays, EDCTs are issued and enforced by ATC with little to 

no control by airline management. Based on domain expertise, the scope of EDCT prediction for 

enhanced airline management and planning is immense, and this study is aimed at adding 

literature to the subject.  

 

Methodology 

 

The purpose of the study was to develop a time series model to predict EDCTs based on 

surface weather observations for a large hub airport in the US. Based on the reviewed literature, 

the researchers adopted Vector Autoregression and Recurrent Neural Network, specifically Long 

Short Term Memory, modeling approaches for the study. The researchers aimed to develop a 

VAR model and an LSTM model and compare model performance to predict the EDCTs. For the 
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modeling, the researchers used Charlotte Douglas International Airport (Charlotte). Charlotte is 

the largest hub for American Airlines in the US, with 397,983 departures and arrivals in 2020 

(Charlotte Airport Media, 2021). While the model was built based on the data for Charlotte 

Douglas International Airport, the researchers expect the results of the study to be transferable 

for prediction and analysis at other large hub airports as well. Figure 1 depicts the overall model 

development pipeline adopted for the study. 

 

Figure 1 

Overall Model Development Pipeline for the Study 

 

 
Data Collection and Preprocessing 

 

The researchers acquired historical hourly surface weather observations and hourly traffic 

data, including EDCT data for Charlotte Douglas International Airport. Two databases were 

provided by the National Oceanic and Atmospheric Administration (NOAA) and FAA for the 

weather and traffic information, respectively (FAA, n.d.; NOAA, n.d.). The hourly weather and 

traffic data for Charlotte Douglas International Airport from 2014-2019 was used in this study. 

The data for 2020 was included due to the effects of the COVID-19 pandemic on air travel. Once 

the data was downloaded in comma separate values (CSV) formatted files, the researchers 

formed a dataset from the different data files using a Structured Query Language (SQL) 

application with the date/time column as the foreign key. Since the data was structured with data 

points corresponding to every hour, it could be treated as a time series dataset for the data 

preprocessing and data analysis stages. The dataset required significant preprocessing due to 

missing values for some data points. The researchers utilized the Pandas library for the Python 

programming language for the preprocessing tasks and a forward-filling method to handle 

missing values. Once the data was preprocessed, it was used to build the VAR and LSTM 

models.  

 

Vector Autoregression Architecture 

 

Vector Autoregression is a statistical technique used to capture the dependencies of 

multiple time series variables and the temporal dependencies over time. VARs have been 

extensively developed and deployed for multivariate time-series predictions. VARs can be used 

to develop multiple simultaneous equations with the time-lagged values of all the variables, 

called endogenous variables, used to model and analyze the relationship between the different 

variables. The VAR model for the study was built utilizing the Statsmodels library in the Python 

3.0 Programming Language. Figure 2 depicts the model development strategy developed by the 
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VAR model. The VAR model can be represented by Equation 1. 

𝑌𝑡 =  𝛼 + 𝛽1  𝑌𝑡−1 + 𝛽2  𝑌𝑡−2 + ⋯ + 𝛽𝑝  𝑌𝑡−𝑝 + 𝜀𝑡                                                                    (1) 

𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
𝛽1  , 𝛽2   … 𝛽𝑝  = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑔𝑠 𝑓𝑟𝑜𝑚 𝑡 𝑡𝑜 𝑡 − 𝑝 

𝑌𝑡 , 𝑌𝑡−1 … 𝑌𝑡−𝑝 = 𝐸𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

𝜀𝑡 = 𝐸𝑟𝑟𝑜𝑟 𝑇𝑒𝑟𝑚 
 
Figure 2 

Model Development Strategy for the VAR model 

 

 
 
Stationarity Testing for VAR 

 

Autoregressive models perform most effectively when the time series variables exhibit 

stationarity (Abdulnasser, 2004). The researchers utilized the Augmented Dickey-Fuller Test to 

test the stationarity of the time series at a significance level of 0.05 (Kulaksizoglu, 2005). The 

Augmented-Dickey Fuller Test tests the null hypothesis that a unit root is not present in the time 

series analyzed. Based on the test statistic of the test, which is a negative number, the null 

hypothesis can be rejected and determined that the unit root is present. 

 

Table 1 depicts the results of the Augmented Dickey-Fuller Test. Based on the results of 

the test, all the time series variables were determined to be stationary and could be used for the 

model development without any further adjustments. Figure 3 is a heatmap of the covariance 

matrix of the variables utilized for the VAR model. The heatmap depicts the covariance between 
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each pair of variables for a given random vector. The covariance matrix can be used to analyze 

the interrelation of all the individual random variables in the matrix and used in conjunction with 

the Augmented Dickey-Fuller Test to evaluate any data processing and variable selection needs.  

 

Table 1 

Augmented Dickey-Fuller Test 

 

Variable Test Statistic Critical Value 

(0.05) 

Number of Lags 

Chosen 

Stationarity 

Hourly Arrivals -20.2629 -2.862 54 Stationary 

Hourly Gate Delays -21.0193 -2.862 55 Stationary 

Altimeter -18.4218 -2.862 55 Stationary 

Temperature -7.7599 -2.862 54 Stationary 

Precipitation -30.8831 -2.862 30 Stationary 

Hourly Relative Humidity -19.8074 -2.862 51 Stationary 

Hourly Visibility -22.411 -2.862 52 Stationary 

Average EDCT -24.7523 -2.862 50 Stationary 

 
Order Selection 

 

Order selection is a crucial aspect of developing a time series model. While tools such as 

autocorrelation function (ACF) or partial correlation functions (PACF) can be used to determine 

the appropriate order, the researchers used a combination of the Akaike Information Criterion 

(AIC), Bayesian Information Criterion (BIC), and Hannan-Quinn Information Criterion (HQIC) 

to determine the appropriate lag order. Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC), and Hannan-Quinn Information Criterion (HQIC) are estimators of 

prediction errors for a statistical model. AIC (Equation 2), BIC (Equation 3), and HQIC 

(Equation 4) can be used as indicators of the qualities of a model in comparison to other models 

and can be used for model selection.  

 

𝐴𝐼𝐶 = 2𝑘 − 2 ln(�̂�)                                                                                                        (2) 

𝑘 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 
�̂� = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
 

𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2 ln( �̂�)                                                                                                 (3) 

 �̂� =  𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 
𝑘 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 
 
𝐻𝑄𝐼𝐶 =  −2𝐿𝑚𝑎𝑥 + 2𝑘 ln(ln(𝑛))                                                                                     (4) 
 𝐿𝑚𝑎𝑥 = 𝐿𝑜𝑔 − 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 
𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 
𝑘 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 
 

The researchers used a loop algorithm in the Python Programming Language to 

determine the AIC, BIC, and HQIC for VAR models with lag orders ranging from 1 to 50. Based 



Collegiate Aviation Review International 

 

A publication of the University Aviation Association, © 2022 88 

on the AIC, BIC, and HQIC evaluation, a lag order of 13 was determined to be the optimal lag 

order. Once the lag order was determined, the researchers developed the VAR model based on 

the parameters selected.  

 

Data Preparation 

 

Once the initial statistical testing was completed, the researchers split the data for the 

training and testing of the model. The total dataset consisted of 52,582 instances or rows, with 

each row representing an hourly interval. Sci-Kit Learn library on Python was used to split the 

data with 80% of the data used for training and 20% of the data used for testing. Finally, the 

researchers set the Shuffle to False to ensure that the temporal order was maintained during the 

splitting operation. The training data had 47,323 instances, and the testing data had 5,259 

instances. 

 

Regression Equation and L1 Regularization 

 

The VAR model developed to predict EDCT would consist of 104 independent variables 

(for EDCT prediction) due to eight time series variables and a lag order of 13. Such a complex 

model would increase model cost, complexity, sensitivity to noise or outliers, and the possibility 

of overfitting (Tan et al., 2019). The researchers utilized the L1 regularization (Lasso) technique 

to regularize the model and reduce the number of independent variables for the model. Such a 

regression model is expected to exhibit high performance with lower cost, complexity, and low 

possibility of overfitting. L1 regularization computation can be illustrated by Equation 5. 

 

𝐶𝑜𝑠𝑡 = ∑ (𝑌𝑖
𝑛
𝑖=1 − ∑ 𝑋𝑖𝑗 𝛽𝑗)2𝑝

𝑗=1 +  𝜆 ∑ 𝛪𝛽𝑗𝛪𝑝
𝑗=1                                                                  (5) 

 

where 𝜆 ∑ 𝛪𝛽𝑗𝛪𝑝
𝑗=1   is regarded as the penalty term, which is the absolute value of the 

magnitude of the coefficients.  

 

Recurrent Neural Network 

 

Recurrent Neural Networks are a type of neural network commonly used to model 

sequential or time series data. Applications of Recurrent Neural Networks include Natural 

Language Processing, Time Series prediction, Signal Processing, speech recognition, and 

language translation (Geron, 2019). Long Short Term Memory models are a type of Recurrent 

Neural Network with the presence of ‘gates’ that are useful for combatting issues such as 

vanishing and exploding gradients and short-term memory commonly seen in normal Recurrent 

Neural Networks. With the presence of a Forget Gate, Input Gate, and Output Gate in every 

LSTM neuron in the network, the model is able to retain long-term memory and dependencies 

for sequential or temporal data (Geron, 2019). The LSTM model for the study was built using the 

Tensorflow library in the Python 3.0 Programming Language. 

Data Preparation  

 

To build the LSTM model using the TensorFlow library, the researchers needed to 

preprocess the data into a special array format utilizing the TimeSeriesGenerator library on 

Python. The researchers utilized the Sci-Kit Learn library to conduct the Train-Test Split 
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operation and set the Shuffle to False to maintain the temporal order of the dataset. For the 

LSTM model, a validation set was used for the hyperparameter tuning. The data was split with 

80% of the data used for training, 10% of the data used for validation, and 10% of the data used 

for testing. With a total of 52,582 instances, the training dataset had 42,066 instances, the 

validation dataset had 5258 instances, and the testing dataset had 5,259. The testing dataset for 

the LSTM and VAR models was the same.  

 

The researchers intended to create a sliding LSTM model and train the model in batches. 

The window length for the LSTM was set to four, batch size to 32, and sliding to 1. This could 

be seen as each batch consisting of 32 data points, with each data point containing 4 hours of 

data with a sliding operation of 1 step. Figure 3 depicts the model development strategy used for 

the LSTM model.  

 

Figure 3 

Model Development Strategy for LSTM Model 
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LSTM Architecture and Hyperparameter Tuning 

 

The LSTM model architecture was severely inspired by previous literature on similar 

prediction tasks. Once the initial model architecture was tuned, the researchers tuned the 

hyperparameters of the model using the Keras Tuner. A 2D-Convolutional layer was used as the 

first layer, followed by three LSTM layers with the Leaky Rectified Linear Unit (ReLU) as the 

activation function. Each LSTM layer was followed by a 50% dropout layer as a regularizer. 

Additionally, the optimizer was set to Adaptive Momentum (Adam), and the loss function was 

the mean squared error. Early stopping of the training was added as an additional regularizer. 

Figure 4 is the model summary output from the Tensorflow library that describes the layer type, 

activation function, output shape, and parameters for each layer. Figure 5 is an illustration of the 

LSTM model developed for the study. 

 
Figure 4 

LSTM Model Parameters 
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Figure 5 

LSTM Model Parameters 

 

 
 

 



Collegiate Aviation Review International 

 

A publication of the University Aviation Association, © 2022 92 

Model Interpretability  

 

The LSTM model was a deep neural network model intended for the regression 

prediction of the EDCT values. However, for any machine learning model, model interpretability 

is an important aspect rather than treating the developed model as a black box. Shapley Additive 

Explanations (SHAP) can be used to assess the features utilized to develop a machine learning 

model, especially a neural network model (Molnar, 2021). Derived from a game theory approach 

to explain the output of models, SHAP computes Shapley Values utilizing coalitional game 

theory by treating each feature as a player in the game. The SHAP computation can be illustrated 

by Equation 6. 

 

𝑔(�́�) = ∅0 + ∑ ∅𝑗
𝑀
𝑗=1

́ �́�𝑗                                                                                                               (6) 

 

Where 𝑔 is the explanation model, �́� ∈ {0,1}𝑀 is the coalition vector, M is the maximum 

coalition size, and  ∅𝑗 is the feature attribution of a feature j. A significant advantage of utilizing 

SHAP to interpret a model is the robustness of SHAP to attribute dependency. As feature 

importance and permutation importance methods are poor in capturing attribute dependency 

among the attributes or features used for the model development, they might over-emphasize or 

under-emphasize some features depending on how those features correlate with other features, 

which is commonly referred to as the high-correlation variable problem (Hooker et al., 2019). 

Utilizing Shapely Value Imputation, SHAP is robust to the multicollinearity among the features 

(Lipovetsky & Conklin, 2001; Lundberg & Lee, 2017). The mean magnitude of SHAP values 

will be derived utilizing the SHAP library in Python. While the TimeSeriesGenerator library was 

used to develop the LSTM models on TensorFlow, the training set had to be formatted to a 3D-

Array format utilizing the NumPy library due to the limitations of the SHAP library.  

 
Results 

Vector Autoregression Model 

 

Based on the data preprocessing, variable selection, stationarity testing, and lag order 

selection procedures, a VAR model with an order of 13 was developed. Table 2 summarizes the 

results of the VAR model. 

 

Table 2 

Vector Autoregression Model Results 

 

Parameter Value 

Number of Equations 8 

Akaike Information Criterion 7.22924 

Bayesian Information Criterion 7.57313 

Hannan-Quinn Information Criterion 7.33783 

Final Prediction Error 1379.17 

Log-Likelihood -627489 
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The original VAR model built using the Statsmodel library on Python does not involve 

any sort of regularization. The original VAR model was modified with L1 regularization to 

remove non-significant endogenous variables for predicting the EDCTs. Finally, a regression 

equation was developed to predict the EDCT. Table 3 depicts the coefficients, standard error, T-

statistic, and probability value associated with each of the endogenous variables used for the 

regression equation. 

 

Table 3 

EDCT Regression Equation Analysis 

 

Variable Coeffici

ent 

Standard Error T-Statistic p-value 

Lag: 4 Precipitation 25.2754

4 

1.446 17.480 <0.001 

Lag: 3 Precipitation 19.0414 1.443 13.194 <0.001 

Lag 2: Precipitation 15.2144 1.439 10.566 <0.001 

Lag 5: Precipitation 4.1695 1.451 2.873 0.004 

Lag 1: Precipitation 2.8705 1.3760 2.086 0.007 

Lag 1: EDCT 0.3204 0.0045 70.872 <0.001 

Lag 3: Hourly Visibility 0.216 0.0532 4.059 <0.001 

Lag 2: EDCT 0.112 0.0047 23.789 <0.001 

Lag 1: Hourly Visibility 0.1029 0.0456 2.254 0.004 

Lag 6: Temperature 0.0856 0.0265 3.253 0.001 

Lag 1: Relative Humidity 0.039 0.0089 4.392 <0.001 

Lag 2: Gate Delay 0.006 0.0018 3.295 0.001 

Lag 3: EDCT 0.014 0.0046 3.032 0.002 

Lag 4: EDCT 0.015 0.0046 3.145 0.002 

Lag 5: Precipitation 4.24 1.414 3.003 0.003 

Lag 6: Temperature 0.014 0.025 3.147 0.004 

Lag 3: Temperature -0.076 0.0255 -2.679 0.007 

Lag 1: Precipitation 3.31 1.342 2.466 0.008 

Lag 1: Hourly visibility 0.102 0.044 2.315 0.009 

Lag 3: Gate Delays  3.004 1.498 -2.066 0.04 

Constant 14.979 10.5503 1.420 0.156 

 



Collegiate Aviation Review International 

 

A publication of the University Aviation Association, © 2022 94 

Figure 6 

Correlation Matrix of Residuals from the VAR Model 

 

 
 

Once the VAR model was developed and significant endogenous variables were 

determined, there was a need to inspect the serial correlation of the residuals to ensure there was 

a minimal correlation in the residuals and that any patterns in the time series were not left 

unexplained by the VAR model. Figure 7 depicts the correlation matrix for the model residuals. 

We can see that there is no endogenous variable that exhibits a high correlation of residuals with 

EDCTs. We can see a negative correlation between Arrivals and Altimeter with EDCT. The 

strongest correlation of residuals is exhibited by Hourly Relative Humidity and Temperature. 

Additionally, the researchers utilized the Durbin Watson Test to check for the serial correlation 

of the residuals and ensure that the model had sufficiently explained the patterns and variances in 

the time series dataset used. The value of the Durbin Watson Test can vary between 0 and 4, 

where a value close to 2.00 implies there is no significant serial correlation (Durbin & Watson, 

1971). The Durbin Watson Test is utilized to detect autocorrelation at lag 1 for the prediction 

errors of an autoregressive model. Table 4 depicts the results of the Durbin Watson Test. The 

Durbin Watson test results in Table 4 and correlation matrix results in Figure 6 ensured that there 

was no serial correlation of the residuals and that the model had adequately explained the 

variance in the data. The Durbin-Watson Statistic used in the Durbin-Watson Test can be 

represented by Equation 7. 

 

𝑑 =
∑ (𝑒𝑡− 𝑒𝑡−1)2𝑇

𝑡=2

∑ 𝑒𝑡
2𝑇

𝑡=1
                                                                                                                      (7) 

 𝑇 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 
𝑒𝑡 , 𝑒𝑡−1 = 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑢𝑡𝑜𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 
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Table 4 

Durbin Watson Test 

 

Attribute Durbin Watson Statistic 

Hourly Arrivals 1.99 

Hourly Gate Delays 1.98 

Altimeter 1.99 

Temperature 2.01 

Precipitation 2.0 

Hourly Relative Humidity 1.99 

Hourly Visibility 1.98 

Average EDCT 2.0 

 
Model Evaluation 

The VAR model was evaluated on the testing set on evaluation parameters such as mean 

squared error, mean absolute error, and root mean squared error. Table 5 illustrates the model 

results.  

 

Table 5 

Model Evaluation of the VAR model 

 

Evaluation Parameter VAR model 

Mean Squared Error 91.126 

Root Mean Squared Error 9.55 

Mean Absolute Error 

R-Squared 

1.99 

0.6812 

 
Long Short-Term Memory 

 

An LSTM model was developed on the training test and a validation test. Figure 7 depicts 

the training and validation model loss with the different epochs. As early stopping was used as a 

regularizer, the training ceased after epoch 42.  
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Figure 7 

Training and Validation Loss for the LSTM Model with Epochs 

 

 
 

The model was evaluated on the evaluation parameters for the training, validation, and 

testing sets. Table 6 illustrates the model results.  

 

Table 6 

LSTM Model Results 

 

Evaluation Parameter Training Validation Testing 

Mean Squared Error 102.01 121.11 168.14 

Root Mean Squared Error 10.01 11.004 12.96 

Mean Absolute Error 

R-squared 

2.0073 

0.681 

2.3443 

0.677 

2.85 

0.643 

 
 
Model Interpretation 

 

SHAP was used to assess the most significant features utilized by the LSTM model for the 

prediction. The mean absolute SHAP values for the seven features were used to assess their 

impact on the predictions of the model. Figure 8 depicts the mean absolute SHAP values of the 

features. Precipitation had the highest mean absolute SHAP value and the highest impact on the 

target variable followed by Gate Delays. 
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Figure 8 

Mean Absolute SHAP Values 

 

 

 
Discussion and Conclusion 

 

 The purpose of the study was to develop VAR and LSTM models to predict EDCT for a 

large hub airport based on surface weather observations. The study was developed based on the 

significant research gap identified to utilize machine learning techniques to predict EDCTs for an 

airport, given the importance of EDCTs for dispatch operations of an airline. While there are 

several demonstrated machine learning algorithms demonstrated by scholars, VAR and LSTM 

were selected based on previous literature on other domain-related studies. The VAR and LSTM 

model predictions were primarily evaluated on Mean Absolute Error, Mean Squared Error, Root 

Mean Squared Error and R-Squared values. While the VAR outperformed the LSTM model on 

all three evaluation parameters, the performance of both models is considered acceptable. While 

the LSTM model had lower performance, the researchers believe the results of the LSTM 

established the viability of utilizing RNNs such as LSTM or Gated Recurrent Units for EDCT 

predictions. While LSTMs are commonly regarded as more robust time series modeling 

algorithms due to the non-linear activation and optimization functions involved as compared to 

VARs, VARs have been demonstrated to outperform LSTMs in previous studies on related 

subjects (Goel et al., 2016). 

 

While the prediction power of both models was deemed acceptable, it is important to 

critically analyze the model coefficients or feature importance to understand the most significant 

predictors. The VAR model can be analyzed based on the endogenous variables coefficients, and 

the LSTM model can be analyzed based on the SHAP values. The VAR model was regularized 

with L1 regularization to reduce the number of endogenous variables in the final regression 
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equation and reduce the scope for overfitting the model. It is distinctly clear that precipitation 

values until Lag 6 had the strongest influence on the EDCT predictions. Additionally, the final 

regression equation only consisted of endogenous variables up to Lag 6. While the VAR model 

was built utilizing Lag 13, the L1 regularization reduced the number of endogenous variables 

because of their low coefficients and, in turn, insignificant impact on the EDCT prediction. The 

feature assessment for the LSTM was conducted using SHAP. The SHAP analysis is consistent 

with the coefficients of the VAR model as precipitation was distinctly the highest influencer of 

EDCT prediction. The model assessments do match intuition as heavy precipitation can be 

directly associated with convective activity, such as thunderstorms that are a significant cause for 

delays and in turn issuance of EDCTs.  

 

The model proposed in the study is expected to be a dynamic model in which the input 

variables are updated hourly for EDCT predictions. Such a model is expected to aid airline 

dispatchers and airline managers with short-term forecasts and predictions to improve planning 

and resource allocations. Estimations of EDCT a few hours before the flight can be useful in 

contingency planning, customer service, and resource allocations at the hub airport. An 

important utilization for EDCT prediction would be to make necessary adjustments to the 

airline's contingency fuel policy. In the event of long EDCTs, aircraft return to the gate to obtain 

more fuel should they go below their minimum fuel required on the dispatch release. Using these 

predictions, airlines can develop dynamic contingency fuel requirements based on the EDCT 

estimations. Lastly, the results from the model can help airlines develop and optimize a flight 

schedule to reduce the number of heavy arrival banks into hubs. Spacing out arrivals among 

different time banks will reduce the EDCTs and airspace flow constraints. 
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