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Understanding patterns of entry and exit decisions and determinants shaping the patterns are necessary for airline 

planners in drawing a robust route map and gaining their own competitive advantages.  The study used logit models 

to exam the relationship between two separate binary dependent variables: entry versus no-entry, exit versus no-exit, 

and multiple independent variables.  Dataset was extracted from the Bureau of Transportation Statistics DB1B for 

Quarter 1 of 2018, then was reconstructed based on original and destination (O&D) airport pairs to gain 

insights.  The entry decision pattern model yielded seven significant factors: total passengers, average market fare, 

number of carriers, distance, low-cost carriers (LCC) existence, origin hub, and destination hub.  In the meantime, 

the exit decision pattern model yielded all the seven aforementioned factors and two other significant factors: route 

type and the business model of the largest share airline.  The findings made a practical implication to airline network 

planners in considering determinants affecting entry and exit decisions to build a more efficient and profitable 

network. 
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As a result of the Airline Deregulation Act in 1978, the U.S. airline industry has changed 

radically.  Since then, airlines are able to freely make their own decisions as to where they 

should fly, what route market they should enter or increase frequencies, and what route market 

they should reduce or completely remove from the network.  The newly deregulated industry 

witnessed an influx of new entrants with new business models such as low-cost carriers; 

Southwest Airlines is a typical and successful example thus far.  Besides that, innovations in 

aircraft manufacturing has helped airlines operate flights more efficiently with lower costs, but 

higher capacity and longer range.  Under all these conditions, the airline industry has been 

characterized as a free market economy, bringing out many flying opportunities for passengers; 

however, the competition among commercial airlines has become more intensive than ever.  In 

order to survive in such a stiff competition, airlines are attempting to gain their own competitive 

advantages by building an efficient and profitable network.  Understanding patterns of entry and 

exit decisions and determinants shaping these patterns are necessary for airline planners in 

drawing a robust route map.     

 

The literature is replete with studies exploring key drivers and barriers to entering and 

exiting a given route.  Baran (2018) examines the survival strategies of U.S. domestic airlines, 

which corresponded to route entry and exit decision and airfare competition.  The dataset was a 

combination of Airline Origin and Destination (DB1B) and the U.S. Census Bureau in the period 

of 2011-2015.  Baran restricted all entry and exit data associated with eight U.S. major airlines, 

and thus the dataset was N = 2,111 routes; however, there was no information about defining and 

measuring entry and exit decisions.  Utilizing a logistic regression for a binary response, either 

entry or exit, the result showed a significant model with χ2(10) = 120.59, p < .0001, RL
2 = .0511, 

and five significant factors: airline business model, distance, city population of origin airport, per 

capita income in original airport, and number of competitors.  The limitation of the study was 

that Baran measured market concentration by calculating Herfindahl–Hirschman Index (HHI) 

based on the number of seats available per mile (ASM) airlines performed on each route without 

the consideration of the load factor.  Our current study solved the problem by measuring the 

market concentration and market shares based on the number of passengers airlines transported 

on each route. 

 

Abdelghany and Guzhva (2010) investigated entry and exit decisions by using a panel 

dataset of 38 quarters beginning in the first quarter of 1998 with the largest 10,000 city pairs in 

the U.S. domestic market.  The dependent variable of the study was estimated by the differences 

in number of airlines between two consecutive quarters; positive changes indicated airline 

entries, while negative changes indicated airline exits.  The independent variables in the analysis 

included market concentration measuring by Herfindahl–Hirschman Index (HHI), quarterly 

changes in market concentrations (ΔHHI t – 1, ΔHHI t – 2, and ΔHHI t – 3), market size measuring 

the number of passengers, quarterly change in market size (ΔPX t – 1), distance between city 

pairs, average one-way fare, and seasonality represented by three dummy variables for Quarter 2, 

3, and 4 (comparing to the reference Quarter 1).  The advantage of this study was the utilization 

of a panel data analysis that combined a cross-section and time-series analysis.  the results of F-

tests and Breusch-Pagan Lagrange Multiplier (LM) test failed to reject the null hypothesis and 

thus yielded a pooled ordinary least squares (OLS) estimation.  All independent factors were 
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significant at the preset alpha of 5% in the overall model, and the adjusted R2 = .09.  The 

disadvantage of the study was that the estimation of the dependent variable failed to capture 

changes in each unit of analysis (quarter-route) when, for example, each of three different 

airlines adds one flight into a given route, concurrently an airline removes one flight from the 

route.  In such cases, although the response shows airline entry decisions (i.e., a positive 

response with two flights added into the route), there is still one exit decision in the route during 

the given quarter.  This current study technically solved the problem by separately measuring 

entry and exit decisions in each route, which was fully discussed in definition and data 

construction sections.  Previous research examined market characteristics: market density, 

distance, endpoint city populations and income, and hub effects together with competition-

related factors (Boguslaski, Ito, & Lee, 2004; Ito & Lee, 2003; Oliveira, 2008).   

 

Based on the review of the literature, the motivation to conduct the current study was to 

partially replicate with the latest dataset as well as mostly using more robust estimation in the 

dependent variables, entry and exit decisions.  The current study also followed and examined 

factors suggested by previous research relative to distinguishing patterns of airline entry and exit 

in the U.S. domestic market.  The different points were that we decided to omit several suggested 

variables and added new variables into the analyses because we reconstructed the raw dataset 

and gained more insights.  Specifically, we used the variable of total passengers in each route to 

represent the demand as opposed to using the cities’ population and income, and we obtained 

some new variables such as LCC existence and the business model of the airline with the largest 

share.   

 

Purpose 

 

The purpose of the study was to identify factors that would shape route entry and exit 

decision patterns of commercial airlines in the U.S. domestic market.  The two variables of 

interest, entry patterns and exit patterns on the city-pair market, were independent of each other.  

The targeted research factors consisted of 11 independent variables (IVs): total passengers, 

number of departures, average market fare, number of carriers, market concentration, distance 

between origin and destination airports, route type, existence of low cost carriers, business model 

of airline with the largest share, origin hub airport, and destination hub airport.  The study was 

restricted to the U.S. domestic routes that have both origin and destination airports located within 

the United States.  In addition, the study only considered route markets that had at least one 

operation of a commercial airline.  The study was cross-sectional in nature and used the 2018 

dataset of Quarter 1 that was archived in the Bureau of Transportation Statistics (BTS).   

 

Research Questions  

 

The research questions that guided the current study were as follows: 

 

Research question 1: When examined from the entry pattern model, what is the 

relationship between the targeted variables and the dichotomous response variable that 

distinguished between airline route entry and non-entry decisions? 
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Research question 2: When examined from the exit pattern model, what is the 

relationship between the targeted variables and the dichotomous response variable that 

distinguished between airline route exit and non-exit decisions? 

 

Hypotheses 

 

The corresponding research hypotheses were as follows: 

 

Research hypothesis 1: When examined from the entry pattern model, at least one of the 

targeted variables will have predictive value relative to distinguishing between airline route entry 

and non-entry decisions. 

 

Research hypothesis 2: When examined from the exit pattern model, at least one of the 

targeted variables will have predictive value relative to distinguishing between airline route exit 

and non-exit decisions. 

 

Definitions of Variables 

 

Dependent Variables   

 

The study consisted of two separate dependent variables of an airlines, the entry patterns 

and exit patterns, which are both critical strategies that an airline takes into consideration either 

to increase its market share or to exit from routes.  Given a route, entry and exit patterns were 

initially constructed by the differences in the number of departures between Quarter 1 of 2018 

and Quarter 4 of 2017.  The positive differences across the given route were counted as entry 

decisions, which means that airlines either entered for the first time or increased their frequency.  

In the meantime, the negative differences across the given route were counted as exit decisions, 

which means that airlines either stopped their air service or reduced their flight frequency.  If the 

difference returned 0 in that route, there were no entry and exit decisions.  For example, the route 

from ABE to ATW in Quarter 1 of 2018 compared to Quarter 4 of 2017. There were two entry 

decisions: Delta Air Lines (DL) with a 10-flight increase and United Airlines (UA) with a 1-

flight increase; at the same time, one exit decision was made by American Airlines (AA) with a 

1-flight decrease, compared to Quarter 4 of 2017.  Using dummy coding strategies, entry 

patterns were then coded in favor of nonzero values (i.e., 1 was coded as entry decisions made 

versus 0 coded as no change in flight departures across city-pair routes).  Similarly, exit patterns 

were coded in favor of nonzero values (i.e., 1 was coded as exit decisions made versus 0 coded 

as no change in flight departures across city-pair routes).  It was noted that the two entry and exit 

decisions were independent of each other; therefore, we gained two separate variables, entry 

patterns and exit patterns.  

 

Independent Variables 

 

Total passengers were an aggregated number of passengers carried by all airlines on a 

given city-pair route.  
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Number of departures was used interchangeably with the aggregated number of flights 

operated by all airlines on a given route.  

 

Average market fare was defined as the average price of passenger transportation service 

that all airlines offered in a city-pair market.    

 

Number of carriers counted all airlines operating on a given route.  

 

Market concentration was scored by the Herfindahl–Hirschman Index (HHI) for each 

route, measuring the market structure and competition level of the market.  Generally, the score 

is computed by a summation of squared market share of each airline, ranging either from 0 to 

10,000 for a percentage-based computation, or from 0 to 1 for a computation without percentage 

consideration (Abdelghany & Abdelghany, 2009, pp. 47–48).  The HHI in this study followed 

the latter technique, which varied from an approximation of 0 as a clue of a heavily competition 

level to 1 as a clue of a monopolistic market.  

 

Distance was defined as the geographic distance in miles between origin and destination 

airports.  

 

Route type was defined as either nonstop route market coded with 1, or connecting route 

market coded with 0.  Conventionally, the number of coupons (i.e., referred to the number of 

boarding pass of a flight) speak to the characteristic of route market (Yuan, 2016).  It is very 

commonly accepted in the literature that in a specific city-pair route, if the number of coupons is 

1 and nonstop flights are served, the route is considered nonstop market; otherwise it is 

considered a connecting market (Coldren, 2005; Coldren, Koppelman, Kasturirangan, & 

Mukherjee, 2003; Garrow, 2010).  For example, the route ABE-ATW was a connecting market 

due to no nonstop flight being served across airlines. 

 

Existence of low cost carriers was defined as at least one operation of a low-cost carrier 

on a given route.  The variable was coded as 1 if having at least one LCC, and otherwise it was 0. 

 

Business model of airline accounting for the largest share in the given route was 

partitioned exclusively into low-cost carriers (LCC) and full-service carriers (FSC).  The former 

was coded as 1 and the latter was coded as 0 using dummy coding strategy.  A total of 36 

commercial airlines reported as ticketing carriers in the 2018 dataset, and 7 of them correspond 

to the business model of a low-cost carrier, according to reports in their official websites.  These 

LCCs includes Allegiant Air (G4), Frontier Airlines (F9), JetBlue (B6), Spirit Airlines (NK), 

Southwest Airlines (WN), Sun Country Airlines (SY), and Virgin America (VX) (i.e., Virgin 

America’s flights continued to be reported in the study timeframe, but the airline will cease its 

operations as of April 2018 due to the consolidation with Alaska Airlines). The market shares 

were then calculated for each airline in a given route based on the number of passengers it 

transported during the Quarter 1 of 2018.  Only the airline that had the largest share in each route 

was reflected in this variable.  

 

Origin hub airport was a dummy variable coded as 1 if the origin airport is a large hub, 

and 0 if it is a non-large hub.  The large hubs were primary commercial service airports and 
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categorized by the Federal Aviation Administration (FAA) as having 1% and more of annual 

enplanements (“Airport Categories – Airports,” n.d.).   

 

Destination hub airport was a dummy variable coded as 1 if the destination airport is a 

large hub, and 0 if it was a non-large hub.  The large hubs were primary commercial service 

airports and were categorized by Federal Aviation Administration (FAA) as having 1% and more 

of annual enplanements (“Airport Categories – Airports,” n.d.).   

 

Method and Data Construction 

 

Method 

 

The research methodology was retrospective, known as ex-post facto, and the 

corresponding design was cause-type.  This methodology was appropriate to answer the research 

questions because we were determining the extent to which the targeted factors influenced 

whether airlines entered or exited routes.  Furthermore, the effects on the two dependent 

variables, which were group memberships, had already occurred.  As a part of the study, two 

statistical approaches, descriptive and inference, were utilized to answer the research questions.  

The latter approach was involved in logit analyses (i.e., logistic regressions), which were 

appropriate to answer the research problem because the dependent variables were binary nominal 

(Cameron & Trivedi, 2005; Greene, 2011; Hair, Black, Babin, & Rolph, 2010).   

 

Greene (2011) suggested that if the two binary dependent outcomes are interrelated as 

opposed to independent and have a significant correlation coefficient, a bivariate logit model 

should be applied.  An example used by (Katchova, 2013) for a bivariate logit model is an 

investigation on factors influencing the joint outcome of being in an excellent health status (Y1) 

and visiting the doctor (Y2).  Another would be a business decision of whether to use marketing 

contracts or not (Y1) versus whether to use environment contracts or not (Y2).  Given the current 

study, the correlation coefficient between entry and exit patterns were r = -.3520, p < .0001; 

however, each decision to enter or exit was made independently and the decisions were unrelated 

to each other.  In a route, some airlines choose to enter/increase, while others choose to maintain 

their frequency, or even exit at the same time.  Therefore, two separated binary logit models 

were more appropriate to estimate the effect of factors on the entry and exit decision patterns. 
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Table 1 

 

Summary and Description of Independent and Dependent Variables Overall 

 
Variables Description 

Total passengers Continuous variable represented the aggregated number of passengers carried 

by all airlines on a route. 

Number of departures Continuous variable represented the aggregated number of flights on a route. 

Average market fare Continuous variable represented the average of price all airlines offered in a 

route. 

Number of carriers Continuous variable as all airlines operating on a given city-pair route. 

HHI score Continuous variable, range from 0 to 1, measuring market concentration by a 

summation of squared market share of each airline. 

Distance Continuous variables ad the geographic distance in miles between origin and 

destination airports. 

Route type Categorical (dichotomous) variable represented having at least one nonstop 

flight on a given route.  Dummy coded with 1 as nonstop market and 0 as 

connection market (the reference group). 

LCC existence Categorical (dichotomous) variable represented having at least one LCC 

operation on a given route.  Dummy coded with 1 as yes group and 0 as no 

group (the reference group). 

The business model of the largest 

share airline 

Categorical (dichotomous) variable represented the largest share airline is a 

LCC or FSC.  Dummy coded with 1 as a LCC and 0 as a FSC (the reference 

group). 

Origin airport Categorical (dichotomous) variable represented the origin airport is a large hub 

or non-large hub.  Dummy coded with 1 as a large hub and 0 as a non-large hub 

(the reference group). 

Destination airport Categorical (dichotomous) variable represented the destination airport is a large 

hub or non-large hub.  Dummy coded with 1 as a large hub and 0 as a non-large 

hub (the reference group). 

Entry Patterns Categorical (dichotomous) variable represented the airline decisions of entering 

a new route or increasing the frequency in the existing route.  Dummy coded 

with 1 as an entry decision and 0 as a no-entry decision (the reference group). 

Exit Patterns Categorical (dichotomous) variable represented the airline decisions of exiting 

from an existing route or reducing the frequency in a given route.  Dummy 

coded with 1 as an exit decision and 0 as a no-exit decision (the reference 

group). 

Note.  The order of the variables was arranged for the convenience of the readers based on market-related factors: total 

passengers, number of departures, average market fare, number of carriers, and HHI; route-related factors: distance, route type, 

LCC existence, and the business model of the largest share airline; and airport-related factors: origin airport and destination 

airport.  
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Data Construction 

 

The dataset used for analyses in this study was directly downloaded from the U.S. 

Department of Transportation (US DOT) Origin and Destination Data Bank 1B (DB1B).  The 

stored database contains a 10% sample of tickets collected from passengers as they boarded 

aircraft operated by any of the U.S. airlines.  The selected dataset was for Quarter 1 in 2018and it 

was subsequently imported through JMP software.  In particular, the raw data provided quarterly 

demand information on the number of passengers transported between origin-destination pairs, 

itinerary information (e.g., ticketing carriers, operating carriers, number of coupons, distance…), 

and quarterly fare charged by each airline for a route that is averaged across all classes of 

service.  Following Garrow's (2010) recommendation, we eliminated 127,429 routes from the 

total 6,093,175 routes due to missing data on ticketing carriers (i.e., missing ticketing carriers 

were coded either as “--” or 99 on the original dataset).  The data were then reconstructed by 

sorting out all variables based on origin-destination airport pairs.  There were N = 61,024 airport 

pairs after reconstruction, which were different from the original routes by the unique appearance 

of an airport pair.  An example for the reconstructed data was that the ABE-ATW pair had 27 

departures over the quarter from two airlines, while on the raw dataset, it had 27 repeated ABE-

ATW pairs.  However, on both datasets, the 27 departures were all connecting flights, which 

indicated a connecting route market as discussed earlier.  

  

To construct the two dependent variables--entry and exit patterns--we sorted out the 

number of departures performed by each ticketing airline on each O&D airport pair.  The same 

technique was applied to the dataset of Quarter 4 of 2017 to acquire the differences in entry and 

exit decisions made throughout Quarter 1 of 2018.  The number of carriers, the existence of at 

least one LCC, and the number of departures were counted as nonzero values across sort-outs of 

ticketing airlines on each airport pair.  To construct competition-related factors, total passengers, 

market shares of each airline, largest share and its respective airline business model, and HHI, 

we sorted out the number of passengers transported by each ticketing airline on each O&D 

airport pair.  To construct average market fare, we averaged the market fare from all flights 

performed by all airlines on a given route.  To construct distance, we took the minimum of the 

distance in miles flown because the minimum distances indicate the geographic distances 

between the O&D airport pairs in nonstop routes.  

  

The size of the sample, N = 61,024 airport pairs, exceeded all recommendations for a 

minimum sample size of the logistic regression model in the literature.  For example, Hosmer Jr, 

Lemeshow, and Sturdivant (2013) suggested a sample size greater than 400 observations, and 

Peduzzi, Concato, Kemper, Holford, and Feinstein (1996) called on researchers to obtain at least 

10 times the number of independent variables in the model (i.e., the number of independent 

variables in the study, k = 11).  Apart from a large sample size, a logistic analysis requires a 

sample size for each group membership of at least 10 observations per estimated parameter (Hair 

et al., 2010, p. 322), and each independent variable consists of a minimum of one cell frequency 

and no more than 20% of cell frequencies less than five (Tabachnick & Fidell, 2013).  The 

dataset was valid and met all suggestions, thereby ensuring the study’s statistical power, and this 

was confirmed by contingency tables discussed in the sections below. 
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Findings 

 

Descriptive Analysis  

 

Statistical summary of entry patterns.  As reported in Table 2, on itineraries airlines 

made entry decisions, the mean of the demand was more than 277 passengers, which was higher 

than that on itineraries airlines had no change in their schedule with approximately 114 

passengers.  On such routes, airlines supplied more available seat per mile (ASMs) to meet the 

high demand, and thus had more departures with 128 quarterly flights, which was more than 

double the non-entry routes at 57 quarterly flights.  The market concentration on entry routes was 

lower than non-entry routes with 0.72 versus 0.83 in the respective HHI scores, which was a sign 

of a heavier competition with more airlines.  Higher average market fare and longer stage length 

in geographic distance exhibited as long haul flights with higher yield rate for entry routes.  

Abnormalities or potential outliers were spotted in the variables of average market fare and 

distance.  For average market fare on entry route, the standard deviation (SD) was high at 

$1,163.19, while the figure for non-entry routes was $151.93.  The maximum fare on the range 

of average market fare was $215,353.35, which probably belonged to charter flights and was 

identified as an outlier that discussed in the preliminary analysis below.  For the variable of 

distance with the minimum at 11 miles between two airports, we retrieved the route from the 

dataset and uncovered that the O&D airport pairs are OAK (Metropolitan Oakland International 

Airport) and SFO (San Francisco International Airport), which the distance was only from East 

to West boundary of San Francisco Bay. 
 

Table 2 

 

Descriptive Statistics of Continuous Variables in the Model of Entry Patterns  

 

Continuous 

Variables 

Entry No Entry Overall 

Mean SD Range Mean SD Range Mean SD Range 

Total 

passengers 
277.37 1272.29 1 – 34,582 113.75 649.05 1 – 20,560 207.29 1,054.68 1 – 34,582 

Departures 128.29 403.12 1 – 9,229 57.01 223.04 1 – 6,040 97.76 339.78 1 – 9,299 

Average 

market fare 

324.51 1,163.19 0 – 215,353.35 310.50 151.93 0 – 3,680.84 318.51 885.11 0 –215,353.35 

Number of 

carriers 

2.19 1.35 1 – 10 1.61 0.94 1 – 8 1.94 1.22 1 – 10 

HHI 0.72 0.26 0.14 – 1 0.83 0.23 0.19 – 1 0.77 0.26 0.13 – 1 

Distance 1,495.63 1,015.93 11 – 9,700 1,312.44 913.17 55 – 9,571 1,427.16 977.45 11 – 9,700 

 

 As reported in Table 3 and Table 4, entry routes accounted for 57.2% in the total of 

61,024 routes.  Overall, there were 8,468 routes (13.9%) having at least an operation of a LCC in 

which entry decisions appeared on 6,029 routes (17.3% of the total entry route) and exit 

decisions appeared on 2,439 routes (9.3% of the total exit route).  By taking advantage of 

connecting flights to cover all airports in the nation, full-service airlines wholly dominated the 
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overall network with 93.6% in terms of the largest share airline.  On routes having entry decision 

made, there were only 7.3% if the largest share is a LCC, but 92.7% if a FSC.  This was also the 

reason why connection market considerably overweighed nonstop one with 87.8% in comparison 

with 12.2%.  Airlines made 85.9% entry decisions in the total on connection route market as 

opposed to 14.1% entry decisions made on nonstop route market.  This implies that once airlines 

see a potential growth in connection itineraries, they could either increase their frequencies, or 

launch single-connecting in place of previous double-connecting flights, or even serve non-stop 

flights and make the route become nonstop route market.  In case of O&D airport pairs are large 

hubs, approximately 15% entry decisions were made on such routes, which was by far lower 

than those on routes with non-hub airport pairs. 
 

Table 3 

 

Descriptive Statistics Relative to LCC Existence and Business Model of the Largest Share Airlines in the Model of 

Entry Patterns  

 

 

LCC existence 
Business model of the largest 

share airline 

Yes No LCC FSC 

 N % N % N % N % N % 

Entry 34,886 57.2 6,029 17.3 28,857 82.7 2,545 7.3 32,341 92.7 

No Entry 26,138 42.8 2,439 9.3 23,699 90.7 1,370 5.2 24,768 94.8 

Overall 61,024 100 8,468 13.9 52,556 86.1 3,915 6.4 57,109 93.6 

 

Table 4 

 

Descriptive Statistics Relative to Origin, Destination Airport, and Route Type in the Model of Entry Patterns 

  

 

Origin Airport Destination Airport Route Type 

Hub Non-Hub Hub Non-Hub Nonstop Connection 

 N % N % N % N % N % N % N % 

Entry 34,886 57.2 5,404 15.5 29,482 84.5 5,223 15.0 29,663 85.0 4,919 14.1 29,967 85.9 

No Entry 26,138 42.8 3,798 14.5 22,340 85.5 3,946 15.1 22,192 84.9 2,516 9.6 23,622 90.4 

Overall 61,024 100 9,202 15.1 51,822 84.9 9,169 15.0 51,855 85.0 7,435 12.2 53,589 87.8 

 

Statistical summary of exit patterns.  As reported in Table 5, exit decisions were made 

on routes that had higher demand with the average of 298 passengers, but lower fare at $301.40 

compared to 46 passengers and $348.69 on routes no exit decisions were made.  The competition 

level in exit routes was stiffer and fiercer with at least two players and 0.7 HHI, and that in non-

exit routes were easier with one operation of an airline and 0.89 HHI.  When examining the 

distance between two groups, airlines tended to exit on shorter routes (mean at 1,340.74 miles) 

and make no exit decision on long routes (mean at 1,551.99 miles).   
 



Nguyen & Nguyen: Understanding Determinants of Making Airline Route Entry and Exit Decisions 

 

http://ojs.library.okstate.edu/osu/index.php/cari  102 

Table 5 

 

Descriptive Statistics of Continuous Variables in the Model of Exit Patterns 

  

Continuous 

Variables 

Exit No Exit Overall 

Mean SD Range Mean SD Range Mean SD Range 

Total 

passengers 
298.38 1,277.40 1 – 34,582 46.60 394.55 1 – 18,249 207.29 1,054.69 1 – 34,582 

Departures 138.86 409.36 1 – 9,299 25.26 129.26 1 – 5,141 97.76 339.78 1 – 9,229 

Average 

market fare 

301.40 124.40 0 – 3,680.84 348.69 1461 0 – 215,353.35 318.51 885.11 0 – 215,353.35 

Number of 

carriers 

2.28 1.33 1 – 10 1.35 0.71 1 – 8 1.94 1.23 1 – 10 

HHI 0.70 0.26 0.13 – 1 0.89 0.20 0.21 – 1 0.77 0.26 0.13 – 1 

Distance 1,340.74 896.45 54 – 9,571 1,551.99 1,093 11 – 9,700 1,417.17 977.45 11 – 9,700 

 

  As reported in Table 6 and Table 7, exit decisions were made on 38,947 routes, 

accounting 63.8% of the total observations of the study.  There were 19.1% of the exit routes in 

conjunction with the appearance of at least one LCC operation.  On routes that exit decisions 

were made, there were only 8.2% if the largest share is a LCC, but 91.8% if a FSC.  Also, on 

routes that exit decisions made, nonstop market occupied only 16.7%, while the figure for 

connection market was 83.3%.  Similar to entry pattern analysis, approximately 18% exit 

decisions were made on routes with departures and arrivals at large hubs.  
 

Table 6 

 

Descriptive Statistics Relative to LCC Existence and Business Model of the Largest Share Airlines in the Model of 

Exit Patterns  

 
  LCC existence 

Business model of the largest 

share airline 

   Yes No LCC FSC 

 N % N % N % N % N % 

Exit 38,947 63.8 7,432 19.1 31,515 80.9 3,195 8.2 35,752 91.8 

No Exit 22,077 36.2 1,036 4.7 21,041 95.3 720 3.2 21,357 96.8 

Overall 61,024 100 8,468 13.9 52,556 86.1 3,915 6.4 57,109 93.6 
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Table 7 

 

Descriptive Statistics Relative to Origin, Destination Airport, and Route Type in the Model of Exit Patterns 

  
   Original Destination Route Type 

   Hub Non-Hub Hub Non-Hub Nonstop Connection 

 N % N % N % N % N % N % N % 

Exit 38,947 63.8 7,042 18.1 31,905 81.9 7,080 18.2 31,867 81.8 6,520 16.7 32,427 83.3 

No Exit 22,077 36.2 2,160 9.8 19,917 90.2 2,089 9.5 19,988 90.5 915 4.1 21,162 95.9 

Overall 61,024 100 9,202 15.1 51,822 84.9 9,169 15.0 51,855 84.9 7,435 12.2 53,589 87.8 

 

Preliminary analysis 

 

The targeted independent and dependent variables were tested for compliance with the 

assumptions of logistic regression.  First, the assumption of a dichotomous dependent variable 

was obtained through group memberships of both dependent variables.  Entry patterns were 

coded either 1 for entering/increasing, or 0 for not entering/increasing flights in a route.  Exit 

patterns were coded either 1 for exiting/reducing, or 0 for not exiting/reducing flights in a route.  

Second, the assumption of mutually exclusive categories on the dependent variables was 

fulfilled.  Each route of airport pairs was a member of one group or the other, but not both, and 

therefore was exhaustive and mutually exclusive.  Third, the assumption of independence of 

scores on the dependent variables was presumed to be compliant because the study’s dataset was 

not the result of repeated measures or matched data.  Instead, the data were acquired from an 

archival database of U.S. DOT, and thus the data for each targeted variable associated with each 

route of airport pairs were unrelated.  Lastly, the assumption of correct specification of the 

model, which requires the hypothesized model only include independent variables that are 

relevant, was met.  The reason was that the inclusion of the targeted variables in the 

hypothesized model was based on prior research, and the significant chi-square test for the fit of 

the null and convergent models discussed in primary analysis.  

 

Although not required for a logistic regression, outlier analysis and the absence of 

multicollinearity in the independent variables were also addressed because these issues could be 

indicative of a poor predictive model.  Outliers are extreme data points inconsistent with others, 

and it potentially could produce results that are not representative of the relationships in the 

remaining data.  Outliers can be labeled as either contaminants or rare cases (Cohen J., Cohen P., 

West, & Aiken, 2003).  We conducted a statistical analysis on the dataset with N = 61,024 routes, 

and determined 3,536 routes (5.8%) as potential outliers based on Jackknife distances.  “The 

distance for each observation is calculated with estimates of the mean, standard deviation, and 

correlation matrix that do not include the observation itself.  The jack-knifed distances are useful 

when there is an outlier.” (SAS Institute Inc., 2016, pp. 50–51).  Examination of these outliers 

revealed several instances in which there was an inconsistency; for example, the average fare in 

BGM-HNL was extremely high at $215,353.35 with only one carrier operating on the route, 

which was most likely a charter flight rather than a commercially-scheduled flight.  To determine 

the impact of these outliers, we ran analyses before and after excluding the outliers, and then we 

compared the results of the models.  All overall models yielded significant results with few 
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differences; however, the estimations were impacted considerably.  Therefore, we decided to 

eliminate all the flagged outliers from the primary models, and the sample size reduced to N = 

57,488 routes. 

 

Multicollinearity can occur if the independent variables in a model are highly-correlated, 

and it can be examined through a correlation matrix.  Cohen et al. (2003) suggested an existence 

of multicollinearity if the correlation coefficient is r > .8 between two independent variables.  As 

reported in Table 8, compared to the threshold, the number of carriers and HHI were labeled as 

multicollinearity, rCarriers vs. HHI = -.89, which indicates the negative relationship that the more 

carriers, the smaller HHI score is.  Evidence of serious multicollinearity also was found between 

the total passengers and the number of departures, r Pax vs. Departures = .91, indicating a positive 

relationship when airlines have more flights, and thus, can carry more passengers.  For the sake 

of interpretations in later sections, we decided to retain the number of carriers and total 

passengers in the model and to exclude HHI and number of departures from the final model.  At 

this point, the number of independent variables was reduced, k = 9 in total.  
 

Table 8 

 

Correlation Matrix between Continuous Variables 

 

 Carriers Market Fare Total Passengers HHI Departures Distance 

Carriers 1.0000 -0.1129 0.3835 -0.8906 0.5523 -0.0119 

Market Fare -0.1129 1.0000 -0.1659 0.0808 -0.1723 0.3811 

Total Passengers 0.3835 -0.1659 1.0000 -0.2017 0.9142 -0.1093 

HHI -0.8906 0.0808 -0.2017 1.0000 -0.3398 0.0123 

Departures 0.5523 -0.1723 0.9142 -0.3398 1.0000 -0.1053 

Distance -0.0119 0.3811 -0.1093 0.0123 -0.1053 1.0000 

 

Primary Analysis 

 

Two separate simultaneous models were developed by regressing two independent 

variables: Entry versus No entry and Exit versus No Exit, on the nine independent variables 

simultaneously.  Following Warner's (2008) recommendations, the overall goodness of fit of null 

models, which regressed group memberships in the absence of nine independent variables, were 

compared to that of the full models.  The assessments point to the log likelihood (LL) function 

and the chi-square statistic.  The former is comparable to the sum of the squared residuals in 

multiple regression, while the latter is the difference between -2LL for the full model and -2LL 

for the null model (Warner, 2008).   

 

Entry patterns models.  As reported in Table 9, the full model was statistically 

significant, χ2(9) = 3441.82, p < .0001.  In addition, Cohen et al. (2003) recommended reporting 

the Pseudo-R2 (RL
2) as a gain in prediction obtained from adding variables to a model.  The full 

model provided a predictive gain of 4.36% over the null model (RLfull
2 = .0436, df = 9). 
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As reported in Table 10, the null model was significant, χ2(0) = 785.17, p < .0001.  The 

null model’s logit in the Entry group was B Constant = 0.235, which means that in the absence of 

information provided the independent variables, the odds of entering/increasing flights in a route 

was e 0.235 = 1.26.  When applied the mathematical expression, e 0.235 / (1 + e 0.235) = 0.5575, it 

indicated that 55.75% of the observations associated with entering/increasing flights in Quarter 4 

of 2018.  Because the omnibus test yielded a significant result, we examined the relationship 

between each IV and the DV—Entry patterns.  In the full model, seven of nine IVs were 

significantly related to the group membership, Entry versus No Entry, in the presence of the 

other predictors.   
 

Table 9 

 

Significance of the Simultaneous Model of Entry Patterns 

Model Log Likelihood df χ2 

Null 39452.34   

Full 37731.43   

Difference 1720.91 9 3441.82*** 

Note. N = 57,488. RL
2 = .0436, ***p < .001  

 

Directions of relationships.  The original logistic coefficient for total passengers was B 

Pax = 0.0003, which indicates a positive relationship between total passenger variable and the 

group membership.  As passengers increased, airlines were more likely to enter/increase their 

operations in the market route.  Similarly, B Fare = 0.0002, B Carriers = 0.5057, and B Distance = 0.0003 

showed positive signs, which signified a likelihood of making entry decision in the market route 

when market fare, number of carriers, and the distance between origin and destination airports 

increased.  For dummy nominal coded variables, B LCC = -0.2462, B Origin = -0.3469, and B Dest = -

0.4281 implied that airlines were less likely to enter/increase their flights in the market route in 

which there had been the appearance of at least one LCC operation, or either the origin or 

destination airport was a large hub.  Two other nonsignificant variables, route type and business 

model of the largest share airline, were not interpreted. 

 

Magnitude interpretations.  To interpret the magnitude of the relationships, we turned 

our attention to the exponential coefficients (odds ratio) that are calculated by raising e to the 

original coefficients (Bi), e 0.0003 = 1.0003 and its reciprocal e -0.0003 = 0.9997.  In the case, e Bi > 1 

indicates a positive relationship, e Bi < 1 indicates a negative relationship, and e Bi = 1 indicates a 

no change in the odds for the membership relative to the discussion IV.  In our study, it means 

that with an increase of one passenger, airlines were 1.0003 times more likely to be involved in 

entry decisions than maintaining their schedule or considering no new entry.  Also, e Bi – 1 

equals the percentage change in odds in which the odds increased by 0.03% if the demand 

increased by one passenger, holding all other variables constant.  In the same way, airlines were 

1.0002, 1.6581, and 1.0003 times more likely to enter the route or increase their flights in the 

route as an increase of market fare by $1, or one more competitor, or 1 mile in the distance 

between the origin and destination airports.  The corresponding odds ratios of making entry 

decisions also increased 0.02%, 65.81%, and 0.03% respectively.  For negative signs in the 
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relationships (i.e., in our entry pattern study, all significant dummy coded nominal variables 

were negative) reciprocals were reported as opposed to its odds ratios.  Particularly, airlines were 

1.2791, 1.4147, and 1.5343 times more likely to enter/increase the frequency in the route in 

which no LCC had existed, and either origin or destination airport was not a large hub.  The 

corresponding odds ratios of making entry decisions in routes characterized by LCC existence, 

origin large hub, and destination large hub decreased by 21.82% (= 0.7818 – 1), 29.32% (= 

0.7068 – 1), and 34.83% (= 0.6517 – 1), respectively.  
 

Table 10 

 

Summary of Logistic Regression Estimates for the Null and Simultaneous Model of Entry Patterns 

  
 Bi

 SE χ2 p Odds Ratio 95% CI Reciprocal 

Null Model        

Constant 0.235 0.0084 785.17 <.0001***    

Full Model        

Constant -0.9381 0.0302 960.50 <.0001***    

Total 

Passengers 

0.0003 0.00006 25.54 <.0001*** 1.0003 [1.0001, 1.0004] 0.9997 

Market fare 0.0002 0.00007 5.81 <.0001*** 1.0002 [1.0000, 1.0003] 0.9998 

Number of 

carriers 

0.5057 0.0112 2038.8 <.0001*** 1.6581 [1.6221, 1.6949] 0.6031 

Distance 0.0003 0.00001 429.87 <.0001*** 1.0003 [1.0002, 1.0003] 0.9997 

Route type -0.0468 0.0448 1.09 .2963 0.9542 [0.8740, 1.0419] 1.0479 

LCC existence -0.2462 0.0499 24.27 <.0001*** 0.7818 [0.7089, 0.8622] 1.2791 

Business model 

of the largest 

share 

0.051 0.060 0.71 .3998 1.0523 [0.9345, 1.1850] 0.9503 

Origin hub -0.3469 0.0271 163.28 <.0001*** 0.7068 [0.6702, 0.7455] 1.4147 

Destination hub -0.4281 0.0271 248.20 <.0001*** 0.6517 [0.6179, 0.6874] 1.5343 

Note. N = 57,488. RL
2 = .0436, df = 9 for the full model, *p < .05. **p < .01. ***p < .001  

 

Another approach in understanding the magnitude of the relationships is to calculate 

marginal effects for the independent variables.  Indeed, reporting marginal effects instead of 

odds ratio is more popular in econometrics (Cameron & Trivedi, 2005; Greene, 2011).  

Following Greene’s (2011) instructions, we informed readers of two types: marginal effects at 

the mean and average marginal effects.  The former is estimated for the average observation (𝑥 ̅) 

in the sample, while the latter is estimated as the average of the individual marginal effects.  In 

both ways, the marginal effects reported in Table 11 were almost identical, so we only 

interpreted the marginal effects at the mean in this study.  In our study, for an additional 

passenger in demand, $1 increase in market fare, one more competitor, and 1-mile increase in 

distance, airlines were 0.007%, 0.005%, 12.31%, and 0.007% more likely to make an entry 

decision, respectively.  In contrast, under independent conditions, at least one LCC operation, 
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origin large hub, or destination large hub, airlines were 6%, 8.45%, and 10.43% less likely to 

make an entry decision into the routes.    

 
Table 11 

 

Summary of Marginal Effects for the Logistic Model of Entry Patterns 

 

 Mean (M) 

Logistic 

Coefficient for 

Entry Patterns 

Marginal 

Effects at the 

Meana 

Average 

Marginal 

Effectsb 

Total Passengers 68.32 0.0003*** 0.00007 0.00007 

Market Fare 310.80 0.0002*** 0.00005 0.00005 

Number of Carriers 1.80 0.5057*** 0.1231 0.1246 

Distance 1345.95 0.0003*** 0.00007 0.00007 

Route Type 0.09 -0.0468 -0.0114 -0.0115 

LCC Existence 0.11 -0.2462*** -0.06 -0.0607 

Business Model of the Largest Share 0.05 0.051 0.0124 0.0126 

Origin Hub 0.13 -0.3469*** -0.0845 -0.0855 

Destination Hub 0.13 -0.4281*** -0.1043 -0.1055 

Note. N = 57,488.  Logit equation = 0.0003XTotal Pax + 0.0002XFare + 0.5057XCarriers + 0.0003XDistance – 0.0468XRoute Type 

– 0.2462XLCC + 0.051XLargest Share – 0.3469XOrigin – 0.4281XDest – 0.9381. 
 

aLogit Value at the Mean was calculated by substituting the means of regressors into the Logit equation.  Logit 

Value = 0.329.  Odds = e 0.329 = 1.389.  Probability Pr (Y = 1 | X) = e 0.329 / (1 + e 0.329) = 0.58, Pr (Y = 0 | X) = 1 - 

0.58 = 0.42. Marginal Effect at the Means, δp/δxj = f(𝑥 ̅′β) * (1 – f(𝑥 ̅′β)) * βj (Greene, 2011), which in our study 

equals 0.58 x 0.42 x Logistic coefficients. bAverage Predicted Probability were obtained from JMP output for each 

case before taking an average, Pr (Y = 1 | X) = 0.56, Pr (Y = 0 | X) = 0.44.  Average Marginal Effects, δp/δxj = 
𝛴 𝑓(𝑥′𝛽)

𝑛
 * (1 – 

𝛴 𝑓(𝑥′𝛽)

𝑛
 ) * βj (Greene, 2011), which in our study equals 0.56 x 0.44 x Logistic coefficients, *p < .05. 

**p < .01. ***p < .001  

 

Exit patterns model.  As reported in Table 12, the full model was statistically 

significant, χ2(9) = 10249.31, p < .0001.  RLfull
2 = .1348, df = 9 indicated that the full model 

provided a predictive gain of 13.48% over the null model.  As reported in Table 13, the null 

model was significant, χ2(0) = 3564.8, p < .0001.  The logistic constant coefficient of the null 

model in the Exit group was B Constant = 0.5156, which means that in the absence of information 

provided the independent variables, the odds of exiting/reducing flights in a route was e 0.5156 = 

1.67.  When applied the mathematical expression, e 0.5156 / (1 + e 0.5156) = 0.6255, it indicated that 

62.55% of the observations associated with exiting/reducing flights in Quarter 4 of 2018.  

Because the omnibus test yielded a significant result, we examined the relationship between each 

IV and the DV—Exit patterns.  In the full model, all nine IVs were significantly related to group 

membership, Exit versus No Exit, in the presence of the other predictors.   
 

 



Nguyen & Nguyen: Understanding Determinants of Making Airline Route Entry and Exit Decisions 

 

http://ojs.library.okstate.edu/osu/index.php/cari  108 

Table 12 

 

Significance of the Simultaneous Model of Exit Patterns 

 

Model Log Likelihood df χ2 

Null 38005.80   

Full 32881.14   

Difference 5124.66 9 10249.31*** 

Note. N = 57,488. RL
2 = .1348 

*** p < .0001  

 

Directions of relationships.  The original logistic coefficient for total passengers (B Pax = 

-0.0002), Market fare (B Fare = -0.0003), Distance (B Distance = -0.0003), and LCC existence (B LCC 

= -0.2351) showed a negative relationship with the group membership.  As each of the variables 

increased, airlines were less likely to exit/reduce their operations in a given route.  Conversely, 

the logistic coefficients for the number of carriers (B Carriers = 1.0272), route type (B Route type = 

0.1908), the business model of the largest share airline (B Largest share = 0.2997), origin airport (B 

Origin = 0.4350), and destination airport (B Dest = 0.5029) showed positive signs.  It signified a 

likelihood of making exit decisions in the market route when the number of carrier increase, 

when it is a nonstop market, when the largest share airline is a LCC, and when the origin and 

destination airports are large hubs.   

 

Magnitude interpretations.  As reported in Table 13, airlines were 1.0002, 1.0003, 

1.0003, and 1.2651 times more likely to be involved in exit decisions than maintaining their 

schedule if there is a decrease by one passenger in demand, by $1 in market fare, by 1 mile in 

distance, and there is an operation of at least one LCC in a given route.  The corresponding odds 

ratios of making exit decisions also decreased by 0.02% (= 0.9998 – 1), 0.03% (= 0.9997 – 1), 

0.03% (= 0.9997 – 1), and 20.95% (= 0.7905 – 1), respectively.  On the other hand, airlines were 

2.7933, 1.2102, 1.3495, 1.5450, and 1.6534 times more likely to exit/reduce the frequency in the 

route if one more carrier enters the competition, if a nonstop market, if the largest share airline is 

a LCC, and if either origin or destination airport are large hubs.  The corresponding odds ratios 

of making exit decisions in routes increased by 179.33%, 21.02%, 34.95%, 54.50%, and 65.34%, 

respectively.   
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Table 13 

 

Summary of Logistic Regression Estimates for the Null and Simultaneous Model of Exit Patterns  

 

 Bi
 SE χ2 p Odds Ratio 95% CI Reciprocal 

Null Model        

Constant 0.5146 0.0086 3564.8 <.0001***    

Full Model        

Constant -0.8049 0.0324 616.05 <.0001***    

Total 

passengers 

-0.0002 0.00008 5.52 .0188* 0.9998 [0.9996, 0.9999] 1.0002 

Market fare -0.0003 0.00007 16.79 <.0001*** 0.9997 [0.9995, 0.9998] 1.0003 

Number of 

carriers 

1.0272 0.0140 5337.5 <.0001*** 2.7933 [2.7717, 2.8713] 0.3580 

Distance -0.0003 0.00001 480.69 <.0001*** 0.9997 [0.9996, 0.9997] 1.0003 

Route type 0.1908 0.0592 10.40 .0013** 1.2102 [1.0777, 1.3590] 0.8263 

LCC 

existence 

-0.2351 0.0742 10.05 .0015** 0.7905 [0.6835, 0.9142] 1.2651 

Business 

model of the 

largest share 

0.2997 0.0890 11.33 .0008** 1.3495 [1.1334, 1.6068] 0.7410 

Origin hub 0.4350 0.0310 197.04 <.0001*** 1.5450 [1.4540, 1.6418]  0.6472 

Destination 

hub 

0.5029 0.0312 259.99 <.0001*** 1.6534 [1.5554, 1.7576] 0.6048 

Note. N = 57,488. RL
2 = .1348 

*** p < .0001  

 

Alternatively, marginal effects for the independent variables were reported and 

interpreted in Table 14.  Again, the marginal effects calculated in both ways were almost 

identical, and marginal effects at the mean were used for interpretations.  For an additional 

passenger in demand, $1 increase in market fare, 1-mile increase in distance, and an existing 

LCC operation in a given route, airlines were 0.005%, 0.007%, 0.007%, and 5.28% less likely to 

make an exit decision, respectively.  In contrast, under independent conditions, one more 

competitor, nonstop market, a LCC holding the largest share, origin large hub, or destination 

large hub, airlines were 23.05%, 4.28%, 6.73%, 9.76%, and 11.29% more likely to make an exit 

decision from the routes.    
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Table 14 

 

Summary of Marginal Effects for the Logistic Model of Exit Patterns 

 

 Mean (M) 

Logistic 

Coefficient for 

Exit Patterns 

Marginal Effects 

at the Meana 

Average 

Marginal Effectsb 

Total Passengers 68.32 -0.0002*** -0.00005 -0.00005 

Market Fare 310.80 -0.0003*** -0.00007 -0.00007 

Number of Carriers 1.80 1.0272*** 0.2305 0.2394 

Distance 1345.95 -0.0003*** -0.00007 -0.00007 

Route Type 0.09 0.1908*** 0.0428 0.0445 

LCC Existence 0.11 -0.2351*** -0.0528 -0.0548 

Business Model of the Largest Share 0.05 0.2997*** 0.0673 0.0699 

Origin Hub 0.13 0.4350*** 0.0976 0.1014 

Destination Hub 0.13 0.5029*** 0.1129 0.1172 

Note. N = 57,488.  Logit equation = -0.0002XPax – 0.0003XFare + 1.0272XCarriers – 0.0003XDistance + 0.1908XRoute Type – 

0.2351XLCC + 0.2997XLargest Share + 0.4350XOrigin + 0.5029XDest – 0.8049. 
 

aLogit Value at the Mean was calculated by substituting the means of regressors into the Logit equation.  Logit 

Value = 0.675.  Odds = e 0.675 = 1.965.  Probability Pr (Y = 1 | X) = e 0.675 / (1 + e 0.675) = 0.66, Pr (Y = 0 | X) = 1 - 

0.66 = 0.34. Marginal Effect at the Means, δp/δxj = f(𝑥 ̅′β) * (1 – f(𝑥 ̅′β)) * βj (Greene, 2011), which in our study 

equals 0.66 x 0.34 x Logistic coefficients. bAverage predicted probabilities were obtained from JMP output for each 

case before taking an average, Pr (Y = 1 | X) = 0.63, Pr (Y = 0 | X) = 0.37.  Average Marginal Effects, δp/δxj = 
𝛴 𝑓(𝑥′𝛽)

𝑛
 * (1 – 

𝛴 𝑓(𝑥′𝛽)

𝑛
 ) * βj (Greene, 2011),  which in our study equals 0.63 x 0.37 x Logistic coefficients, *p < .05. 

**p < .01. ***p < .001  

 

Classification accuracy.  Classifications also can be used as supplementary analyses to 

determine the goodness of fit of a logistic regression model (Cohen et al., 2003; Hair et al., 

2010).  We compared the statistical classifications of group memberships in the full models to 

actual group memberships by determining predicted probabilities for each case and developing 

contingency tables of predicted versus actual group membership.  With respect to the entry 

pattern model as reported in Table 15, 35201 (= 22416 + 12785) cases were classified as 

belonging to the Entry group, and 22287 (= 9695 + 12592) cases to the No Entry group in the 

full model.  There were 35008 out of 57488 cases, which was 61%, correctly classified in the full 

model at the predicted probability cut of 0.5.  These correctly classified cases consisted of 22416 

cases (70% hit rate) and 12592 cases (50% correct rejection rate).  With respect to the exit 

pattern model as reported in Table 16, 35154 (= 26456 + 8698) cases were classified as 

belonging to the Exit group, and 22334 (= 9525 + 12809) cases to the No Exit group in the full 

model.  There were 39265 out of 57488 cases, which was 68%, correctly classified in the full 

model at the predicted probability cut of 0.5.  These correctly classified cases consisted of 26456 

cases (74% hit rate) and 12809 (60% correct rejection rate).  
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Table 15 

 

Classification Matrix for Entry Pattern Model 

 

 Predicted Group Membership 

Actual Group Membership Entry No Entry 

Entry 22416 

(Hitsa = 70%) 

9695 

(Missesb = 30%) 

No Entry 12785 

(False Alarmsc = 50%) 

12592 

(Correct Rejectionsd = 50%) 

Note.  N = 57,488.  The probability cut was equal to pi = 0.5.  Actual group membership was 32111 Entry cases 

(56%) and 25377 No Entry cases (44%). 
 

aHits were the accurate classification of Entry cases to membership in the Entry group. bMisses were the 

misclassification of Entry cases to membership in the No Entry group. cFalse alarms were the misclassification of 

No Entry cases to membership in the Entry group. dCorrect rejections were the accurate classification of No Entry 

cases to membership in the No Entry group.  

 

Table 16 

 

Classification Matrix for Exit Pattern Model 

 

 Predicted Group Membership 

Actual Group Membership Exit No Exit 

Exit 26456 

(Hitsa = 74%) 

9525 

(Missesb = 26%) 

No Exit 8698 

(False Alarmsc = 40%) 

12809 

(Correct Rejectionsd = 60%) 

Note.  N = 57,488.  The probability cut was equal to pi = 0.5.  Actual group membership was 35981 cases (63%) and 

21507 No Entry cases (37%). 
 

aHits were the accurate classification of Exit cases to membership in the Exit group. bMisses were the 

misclassification of Exit cases to membership in the No Exit group. cFalse alarms were the misclassification of No 

Exit cases to membership in the Exit group. dCorrect rejections were the accurate classification of No Exit cases to 

membership in the No Exit group.  

 

Results of Hypotheses Testing 

  

The research hypotheses of the current study are restated here in null form for testing 

purposes.  The decision to reject or fail to reject a null hypothesis relied on the results of the 

respective primary analyses.  
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Null hypothesis 1: When examined from the entry pattern model, none of the targeted 

variables will have significant predictive value relative to distinguishing between airline route 

entry and non-entry decisions.  As reported in Table 9, the simultaneous model was statistically 

significant, χ2(9) = 3441.82, p < .0001.  Given a significant overall model, the individual 

variables within this model were examined for significance.  As reported in Table 10, seven of 

nine variables were significant at the preset alpha level of .05: Total passengers (p < .0001), 

Market fare (p < .0001), Number of carriers (p < .0001), Distance (p < .0001), LCC existence (p 

< .0001), Origin hub (p < .0001), and Destination hub (p < .0001).  Therefore, the decision was 

to reject the null hypothesis 1, and to accept the alternative hypothesis 1 that stated when 

examined from the entry pattern model, at least one of the targeted variables will have significant 

predictive value relative to distinguishing between airline route entry and non-entry decisions.  

  

Null hypothesis 2: When examined from the exit pattern model, none of the targeted 

variables will have significant predictive value relative to distinguishing between airline route 

exit and non-exit decisions.  As reported in Table 12, the simultaneous model was statistically 

significant, χ2(9) = 10249.31, p < .0001.  Given a significant overall model, the individual 

variables within this model were examined for significance.  As reported in Table 13, all nine 

variables were significant at the preset alpha level of .05: Total passengers (p = .0188), Market 

fare (p < .0001), Number of carriers (p < .0001), Distance (p < .0001), Route type (p = .0013), 

LCC existence (p = .0015), Business model of the largest share (p = .0008), Origin hub (p < 

.0001), and Destination hub (p < .0001).  Therefore, the decision was to reject the null hypothesis 

2, and to accept the alternative hypothesis 2 that stated when examined from the exit pattern 

model, at least one of the targeted variables will have significant predictive value relative to 

distinguishing between airline route exit and non-exit decisions. 

 

Conclusions 

 

 With respect to entry pattern decisions, the simultaneous logistic regression yielded seven 

significant factors that distinguished between entry and non-entry decisions in a given U.S. route.  

For a 100-passenger increase, airlines were 7% more likely to enter a new route or increase the 

frequency in their existing routes.  In this case, the purpose of making entry decisions is to 

increase available seats per mile (ASM) to meet the increasing demand on the given route.  For a 

100-dollar increase in market fare, airlines were 5% more likely to enter/increase their 

operations.  A high air fare would be a clue of a profitable market, which are appealing on an eye 

of airline network planners.  With an appearance of one new competitor on a given route, airlines 

were 12.31% more likely to increase their operations.  The probable reason is that in order to 

maintain the current market share on the O&D airport pair, airlines are likely to compete against 

others by increasing the frequency, which would provide passengers a less total trip time 

(Belobaba, Odoni, & Barnhart, 2015).  For a 100-mile increase in distance between O&D 

airports, airlines were 7% more likely to enter/increase the number of departures on that route.  

On long haul routes, airlines could leverage the economies of scale, low operating costs, high 

aircraft utilization.  Additionally, passengers on long range flights usually have a high 

willingness-to-pay for ticket fares as well as additional on-board services.  

  

On routes with at least one operations of a LCC, airlines were 6% less likely to make an 

entry decision.  Indeed, competition on route market with the appearance of LCCs is stiffer and 
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fiercer due to its large effect on average air fare (Brueckner, Lee, & Singer, 2013).  Furthermore, 

airlines were 8.45% less likely to enter/increase their operations on the route in which origin 

airport is a large hub, and 10.43% less likely to enter/increase their operations in which 

destination airport is a large hub.  Airlines, especially low-cost carriers, have a tendency to move 

their operations away of large hubs to avoid higher landing fees, terminal congestions, or self-

uncontrollable delays.  Instead, routes with departures and arrivals performed at secondary 

airports within the targeted airport’s catchment area are strategically taken into consideration.  

  

With respect to exit pattern decision, the simultaneous logistic regression yielded all nine 

significant factors that distinguished between exit and non-exit decisions in a given U.S. route.  

For an additional 100 passengers in demand, airlines were 5% less likely to make exit/reduce 

their operations in the given route.  It was consistent between entry and exit patterns, which 

airlines tend to either enter the route or increase the frequency or at least maintain their 

frequency rather than making exit decision if the demand is growing.  Moreover, the consistency 

in entry and exit patterns also were reflected through affective factors: market fare, distance 

between origin and destination airports, and origin and destination large hubs.  For either 100-

dollar increase in market fare and 100-mile increase in distance, airlines were 7% less likely to 

make an exit decision, but 9.76%, and 11.29% more likely to exit/reduce their flights if the origin 

and destination airports are large hubs in the given route.  Obviously, airlines are considering 

long haul routes or those with high yield to be profitable market, at the same time, avoiding large 

hubs that might potentially cost airlines the most compared to medium or small hubs. 

  

However, the two models also produced conflicting results that pointed to factors: 

number of carriers, route type, LCC existence, and the airline business model with the largest 

share.  For one more competitor joining the competition, airlines were 12.31% more likely to 

increase their operations, and 23.05% more likely to reduce the operations or stop their service 

on the given route.  The magnitude of making exit decisions were nearly double over that of 

making entry decisions.  It indicates that although airlines could proactively increase their 

frequency to compete with others, they are still preparing exit strategies once the competition 

becomes heavier and fiercer and leads to a “thin-razor” profit margin.  The operation of at least 

one incumbent LCC could put newcomer airlines on initial reluctance to enter their flights, but 

existing airlines were 5.28% less likely to make exit/reduce their flights.  Although LCC 

operations could make the competition more difficult by introducing cheaper fares, the existing 

airlines do not consider it to be serious threats because of using other strategies such as higher 

frequencies, on-board entertainment, baggage lost-and-found services to offset their higher fares.  

Route type and the business model of the largest share airline were the two factors that not 

significantly affected entry decisions, but exit decisions.  For nonstop route markets, airlines 

were 4.28% more likely to reduce their flights or cease their operations on the route.  It is 

commonly accepted in the literature that the level of service with nonstop flights in a nonstop 

market is a the most important and significant factor in attracting the attention of passengers’ 

choice (Coldren, 2005; Coldren et al., 2003; Garrow, 2010).  Therefore, airlines having 

connecting flights are highly likely to lose their passengers to those having nonstop flights, and 

thus the former would cut down the frequency of connecting flights.  If the largest share of a 

given route market is accounted by a LCC, airlines were 6.73% more likely to exit their 

operations out of the market or reduce their flights.  Passengers on route markets with a LCC 

competition are mostly leisure travelers who are sensitive to price and thus are simply attracted 
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by affordable fares of LCCs (Belobaba et al., 2015).  Hence, once a LCC holds the largest share 

and dominates the route market, the market structure will probably be fixed, and consequently it 

is difficult for the remaining airlines to overturn the situation.  The remaining airlines would 

reduce their frequency to avoid directly the competition with the largest LCC, or in worst 

scenarios, completely cease their operations on the route market.    

  

Finally, the findings of the study make an implication to airline planners in understanding 

key drivers as well as barriers to entry and exit decisions.  The tasks of airline planners in 

network planning are to draw the network and route map of airlines in general, and constantly 

evaluate the efficiency and profitability of each route on the network.  Therefore, in aid of 

significant affective factors found in this study, they could gain predictive insights before making 

right decisions, and could assess their competitors’ decisions in the same routes of the network.  

Further implication speaks to airport operators at large hubs in more and more airlines moving 

their operations to secondary airports in which the airlines have low operating costs.      

 

Generalizability, Limitations, and Delimitations 

 

The sample used in the study was also the accessible population that is indeed a census of 

the target population—10% random sample of all U.S. itineraries reported in the 2018 dataset for 

Quarter 1.  For this reason, the sample analyzed in the study was somehow highly representative 

to the target population, and thus the results could be generalizable to the target population.  

However, the ecological generalizability could be limited to only the U.S. domestic market 

because of the unique characteristics of the market that make it difficult to transcend to other 

market.  For example, on international itineraries, flights are predominantly operated in long haul 

routes, and these transcontinental flights usually place their operations at large hubs for 

connections to spoke cities.  

 

One limitation of the study pointed to the data integrity, which means that we had no 

control over how the data were reported and stored in the DB1B database.  Therefore, any 

changes are made to the dataset subsequent to the current study, then any replication studies 

could yield different results.  In the meanwhile, the delimitation of the study was relative to the 

data collection period that was the 2018 dataset for Quarter 1; therefore, similar studies that use a 

different data collection period might not get the same results.  Other minor delimitations were 

our choice of eliminating all outliers in the dataset and using dummy coding strategy for 

categorical variables in the study.  Other studies that decide to keep outliers in the dataset for 

analyses and use other coding techniques such as effects coding or contrast coding might yield 

different results.    
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