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Abstract 

 
This study examined the relationship between expected meteorological conditions as 
specified by TAF reports and actual ground conditions as specified by hourly METAR 
reports for Chicago-Midway (MDW) and Seattle-Tacoma (SEA) airports for the period 
September–December 2011. MDW and SEA were targeted because they had the highest 
and lowest percentage of delays, respectively, for 2011. The rationale was to determine if 
one of the contributing factors for the difference in percentage delays was because of the 
relationship between TAF and METAR reports. The primary hypothesis was that the 
relationship  between  the  forecasts  and  actual  ground  conditions  at  MDW  would  be 
weaker  than  the  corresponding  relationship  at  SEA.  TAF  and  METAR  data  were 
acquired from the respective TAF and METAR products pages at “Aviation Weather 
Charts  Archive”  (2012).  Descriptive  statistics  revealed  that  MDW  had  less  total 
departures than SEA (86,834 vs. 100,133) for all of 2011, but it also had nearly five times 
as many weather-related departure delays than SEA. Chi square analyses indicated that 
although the relationship between TAF and METAR at each airport was statistically 
significant, the corresponding Kappa agreement coefficients showed that this relationship 
was nearly twice as strong at MDW (.60) than at SEA (.35). Plausible explanations 
include that 70% of the weather conditions at MDW were VFR as opposed to only 56% 
at SEA, MDW had one-third the number of special METARS than SEA (374 vs. 917), 
and MDW had approximately one-fifth the number of LIFR conditions than SEA (70 vs. 
337). The analysis also revealed that SEA had difficulty correctly forecasting IFR and 
LIFR conditions, especially under rapidly changing conditions. Based on the study’s 
findings,  it  appears  that  the  relationship  between  TAF  and  METAR  was  not  a 
contributing factor to departure delays at both MDW and SEA during the September– 
December 2011 period. 

 
Introduction and Background 

 
Airport delays are a common and often expected occurrence within the airline 

industry. The Bureau of Transportation Statistics (BTS), which collects aviation data, 
organizes  the  reason  for  airport  delays  into  five  main  categories:  carrier,  weather, 
National Airspace System (NAS), security, and late aircraft arrival. Of these, “weather 
has been identified as the most important causal factor for NAS delays” (Sridhar & 
Kulkarni, 2008, p. 1) and has the greatest impact on airports. 
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“According to FAA statistics, weather is the cause of approximately 70% of the 

delays in the National Airspace System” (Kulesa, N.D., p. 1).  Kulesa also reported 
“weather continues to play a significant role in a number of aviation accidents and 
incidents,” contributing to 23% “of all aviation accidents” (p. 1). Kulesa indicated that 
the total impact of weather “is an estimated national cost of $3 billion for accident 
damage  and  injuries,  delays,  and  unexpected  operating  costs”  (p.  1).  Some  of  the 
weather-related delays cited by Kulesa (N.D.) included thunderstorms and other 
convective weather, in-flight icing, turbulence, ceiling and visibility, ground de-icing, 
and volcanic ash. 

 
Klein, Craun, and Lee (2010) reported “understanding airport delays, their causes 

and their relationship with inclement weather has been the subject of research for many 
years,  especially  since  the  late  90’s”  (p.  1).  This  research  has  benefited  from  the 
combined efforts of federal organizations such as the National Weather Service (NWS), 
Federal Aviation Administration (FAA), Department of Defense (DOD) and NASA, 
private organizations such as MITRE, MIT Lincoln Lab, and academic institutions such 
as MIT, University of Maryland, and George Mason University (Klein et al., 2010). 

 
Most of the research focus has been on developing models of delay. For example, 

using data from BTS and an open-source package called Weka (Hall et al., 2009), which 
is a collection of machine learning algorithms for data mining purposes, Stefanski (2009) 
developed models for predicting flight delays based on various attributes of a particular 
flight. Because of the voluminous amount of data, Stefanski limited his analysis to 
departing flights during the month of February 2008, and focused on seven attributes: day 
of week, airport origin, carrier, departure time, departure delay time, and distance the 
flight must travel after departure. As part of his findings, Stefanski reported that “airports 
and carriers may play a key role in determining whether a flight will be delayed or not” 
(p. 4), and “it is possible to make fairly good predictions on the basis of a few key 
attributes, such as carrier, departure time, date, and airport” (p. 7). A drawback to 
Stefanski’s study, though, is that the data were limited to a single month and he did not 
include weather as one of his attributes. 

 
At  the  26th  International  Congress  of  the  Aeronautical  Sciences,  Sridhar  and 

Kulkarni (2008) reported on their research, which involved developing models relating 
national delay, center level delays, and weather. They developed their models using the 
Weather Impacted Traffic Index (WITI), which is a metric of the number of aircraft 
affected by weather at a given instant of time. WITI uses National Convective Weather 
Diagnostic reports as well as METAR, which is “the primary observation code used in 
the U.S. to satisfy World Meteorological Organization (WMO) and International Civil 
Aviation Organization (ICAO) requirements for reporting surface meteorological data” 
(Aviation Weather Services, 2010, p. 3-1). Sridhar and Kulkarni restricted their analysis 
to traffic data for the 5-month period between April and August for the years 2004–2006, 
inclusive. The centers Sridhar and Kulkarni targeted were the 20 FAA Air Route Traffic 
Control Centers (ARTCC) within the continental U.S. 
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Sridhar  and  Kulkarni  (2008)  found  mostly  small  correlations  (<  .30)  between 
national WITI and center delays, which indicate that the national WITI is not a good 
predictor of weather delays at these centers. The centers with the lowest correlations (− 
.02 to .03) included Seattle (ZSE), Oakland (ZOA), Salt Lake City (ZLC), Albuquerque 
(ZAB), and Minneapolis (ZMP). The center with the largest correlation was New York 
(ZNY) at .40, which indicates that national WITI may be a good predictor of weather 
delays at the New York center. When Sridhar and Kulkarni examined the relationship 
between each center’s respective WITI and center delays, they found that all centers 
except Seattle (− .02) had a positive correlation that ranged between .17 (Jacksonville, 
ZJX) and .72 (Houston, ZHU). This finding suggests that the Seattle center, which covers 
Washington, most of Oregon, and parts of California and Idaho, is unique because the 
weather delays at the center were related to neither the national WITI nor the center’s 
own WITI. 

 
Sridhar and Kulkarni (2008) also examined the impact of weather in each center on 

NAS delays. They found that the Oakland and Seattle centers had the lowest average 
daily WITI, 79 and 83, respectively, which indicates that these regions had the fewest 
number of aircraft affected by weather at a given instant of time. Among the 20 centers, 
though, the Seattle center was the only one with a zero average daily contribution to 
national delays. On the other hand, the center with the highest average daily contribution 
to national delays was the Chicago (ZAU) center, with an average WITI of 1,476. This 
center covers the northern half of Illinois, the southern Wisconsin, the eastern Iowa, and 
parts of Indiana and Michigan. 

 
Instead of focusing on ARTCC as Sridhar and Kulkarni (2008) did, Klein et al. 

(2010) used WITI for predicting airport delays. Klein et al. initially used a 3-component 
WITI that included en route component (E-WITI), the terminal component (T-WITI), and 
the queuing delay component (Q-DELAY). E-WITI “reflects the impact of convective 
weather on routes connecting major airports,” T-WITI “captures capacity degradation 
resulting from surface weather impact, proportional to the number of operations at an 
airport,” and Q-DELAY “measures the cumulative effect of traffic demand in excess of 
capacity” (Klein et al., p. 2). They found that this 3-component WITI was insufficient to 
identify the weather’s impact on individual airports. 

 
As a result, Klein et al. (2010) modified this model and developed a 12-component 

airport WITI that included: E-WITI, which does not depend on the airport’s terminal 
weather; volume WITI, which is based only on traffic; local convective weather; wind; 
snow; IMC data, which includes ceiling or visibility below airport specific minima, fog, 
and heavy rain; and other, which includes “minor impacts due to light/moderate rain or 
drizzle but ceilings/visibility above VFR minima (and) unfavorable RWY configuration 
usually due to light-to-moderate winds (15-20 Kt or even 10 Kt) that prevent optimum- 
capacity runway configurations from being used” (p. 3). These latter five components 
were then converted into T-WITI (linear) and Q-DELAY (nonlinear). Kelin et al. (2010) 
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tested their model comparing predicted delays “for several major airports and for two 
different seasons (summer, winter)” (p. 7) to actual delays for specific dates in 2008 and 
2009. They found the model to be robust and “sufficiently sensitive to weather forecast 
inaccuracies (and therefore) […] can be used for convective and non-convective forecast 
product evaluation” (p. 12). 

 
Pearson (2002) reported that among the fatal general aviation aircraft accidents that 

occurred between 1995 and 2000, two significant factors in 63% of the accidents were 
low ceilings and visibilities, which means the accidents occurred during Instrument Flight 
Rules (IFR) conditions. In an effort to shed light on the importance of IFR conditions in 
Terminal Aerodrome Forecasts (TAFs), Thompson and Baumgardt (2009) examined 
hourly METARs from 1961–2009 “to achieve climatological averages and percentiles for 
IFR conditions for two airports: La Crosse, WI (LSE) and Rochester, MN (RST). In 
contrast to a METAR, which contains the current meteorological conditions, a TAF 
contains the forecasted conditions. It is a “concise statement of the expected 
meteorological conditions significant to aviation for a specified time period within 5 
statute miles of the center of the airport’s runway complex (terminal)” (Aviation Weather 
Services, 2010, p. 7-19). 

 
Thompson and Baumgardt (2009) found that “IFR conditions have the highest 

frequency of occurrence in the Upper Mississippi Valley during the winter months, 
November through March, with fog being the major weather contributor” and that snow 
also contributes about 30% to IFR conditions in cool season (p. 4). Thompson and 
Baumgardt also reported that METAR data from 1961–1990, showed that “measurable 
snow events have a direct correlation to IFR conditions and approximately 90% of IFR 
visibilities occur rapidly, or within 2 hours of snow onset with little difference between 
the two airports investigated” (p. 4). 

 
Thompson and Baumgardt’s (2009) findings suggest that with respect to weather 

involving snow, “TAF utilize IFR as prevailing conditions when confidence is high in 
light measurable snow events (and) that IFR conditions be forecast quickly after snow 
onset” (p. 4). To do this, Thompson and Baumgardt suggested that meteorologists use a 
variety of data, including historical METAR data as well as data from the Localized 
Aviation Model Output Statistics (MOS) Program (LAMP) in their forecast preparation 
process. Thompson and Baumgardt further suggested that because hourly historical 
METAR records are available at many locations that researchers examine historical 
METAR data to see how they related to TAF. 

 
There is no argument that air traffic delays are a common phenomenon within the 

aviation field and that “inclement weather is the single biggest factor causing air traffic 
delays in the U.S.” (Klein, Kavoussi, & Lee, 2009, p. 1). The literature reviewed here 
demonstrates both the diversity of studies being conducted with respect to this issue as 
well as some of the limitations. For example, Stefanski (2009) focused only on delays in 
general without regard to weather and restricted his study to only a single month “to 
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reduce the sheer size of the dataset” (p. 1). Although Sridhar and Kulkarni (2008) focused 
on weather delays specifically, they restricted their studies to those occurring at the 20 
ARTCCs within the continental U.S. They also focused on 5 non-winter months (April to 
August)  for  a  3-year  period.  Klein  et  al.  (2010)  developed  a  robust  airport  delay 
prediction model and applied this model to predict delays using past delay data, but they 
did not examine differences in delays among airports. Lastly, Thompson and Baumgardt 
(2009) concentrated on historical METAR data at two airports to see how they were 
related to IFR conditions in corresponding TAFs. 

 
Purpose Statement and Operational Definitions 

 
Following   Thompson   and   Baumgardt’s   (2009)   recommendation   to   examine 

historical METAR data to see how they relate to TAF, the purpose of the current study 
was to examine the relationship between TAF and METAR at two airports: Seattle- 
Tacoma (SEA) and Chicago-Midway (MDW). The reason for selecting these airports was 
based on Sridhar and Kulkarni’s (2008) findings with respect to the Seattle and Chicago 
ARTCCs, and on data from the Bureau of Transportation and Statistics, which showed 
MDW and SEA had the highest and lowest percentage of delays, respectively, for 2011. 
The rationale was to determine if the relationship between TAF and METAR was a 
contributing factor to weather delays at these airports in 2011. 

 
The current study was guided by the following research questions: (1) What is the 

relationship between METAR and TAF at SEA and MDW, respectively, in 2011? and (2) 
To what extent was the relationship between METAR and TAF a contributing factor to 
weather delays at SEA and MDW, respectively, in 2011? In the context of the study, 
weather conditions were defined with respect to visibility and ceiling height, which were 
classified  as  Low  Instrument  Flight  Rules  (LIFR),  Instrument  Flight  Rules  (IFR), 
Marginal Visual Flight Rules (MVFR), and Visual Flight Rules (VFR). Federal Aviation 
Regulations define LIFR conditions as a ceiling below 500 feet above ground level 
(AGL) and/or less than 1 statute mile visibility. IFR conditions are defined as 500 feet 
AGL to below 1000 feet AGL and/or 1 statute mile to below 3 statute miles visibility. 
MVFR conditions are defined as a ceiling 1000 to 3000 feet AGL and/or 3 to 5 statute 
miles visibility. VFR conditions are defined as a ceiling greater than 3000 feet AGL (or 
no ceiling) and greater than 5 statute miles visibility. Furthermore, “ceiling” was defined 
as overcast conditions or broken cloud cover, and “no ceiling” was defined as clear skies, 
few clouds, or scattered clouds. An overcast cloud layer covers 8/8 of the sky, a broken 
layer covers 5/8-7/8 of the sky, scattered clouds cover 3/8-4/8, few clouds cover 1/8-2/8, 
and clear skies are no clouds (Aviation Weather Services, 2010, pp. 3-13). The cloud 
cover was automatically reported as overcast, broken, scattered, few or clear in the TAF 
and METAR reports. 
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Methodology 

 
The population for this study was all TAF and METAR reports for 2011 from MDW 

and SEA airports. Because of limited access to 2011 TAF and METAR reports, we used 
a convenience sampling strategy that delimited the sample to the 4-month period 
September through December 2011. Data collection consisted of accessing the on-time 
flight  performance  database  (“Research  and  Innovative  Technology  Administration,” 
2012). We then selected the “Get Lookup Table” link in the “OriginAirportID” section 
under the “Origin” headline to acquire the codes for Chicago-Midway (KMDW = 13232) 
and Seattle-Tacoma (KSEA = 14747).To retrieve airport data, we selected the following 
field names and descriptors for the targeted airports: dep_delay_new, arr_delay_new, 
cancelled, cancellation_code, diverted, flights, carrier_delay, weather_delay, NAS_delay, 
security_delay, late_aircraft_delay.Once all the appropriate descriptors were selected, we 
downloaded the corresponding data file and then prepared data tables using Excel. We 
collected TAF and METAR data from the respective TAF and METAR products pages at 
“Aviation Weather Charts Archive” (2012). The METARs were placed into Excel and 
labeled with the appropriate weather category and then matched with the corresponding 
TAF. The completed Excel tables were then loaded into the statistical software JMP Pro 
(2012) for data analysis. 

 
Data Analysis 

 
Descriptive Statistics 

 
A summary of the number and minutes of flight delays by category departing MDW 

and SEA for the last 4 months of 2011 are provided in Table 1 and Table 2, respectively. 
As reported in these tables, MDW had 1,073 weather-related delays and SEA had 231 
weather-related delays. Thus, MDW had 4.65 times more the number of weather-related 
delays than SEA. When examined with respect to total delays, the percentage of weather- 
related delays for MDW was 1073/49141, or about 2.1%, and the percentage of weather- 
related delays for SEA was 231/31842, or about 0.7%. When these data were examined 
with respect to number of minutes of delay, MDW had 47,958 minutes of weather-related 
delay out of 1,179,938 total delays, which is about 4.1%. Similarly, SEA had 7,814 
minutes  of weather-related  delay out  of 693,912  total  delays,  which  is  about  1.1%. 
Finally, when total departing flights are considered, MDW had 86,834 flights in all of 
2011, of which 1073 were weather-related delays (1.2%) whereas SEA had 100,133 
flights in all of 2011, of which 231 were weather-related delays (0.2%). In short, MDW 
had nearly five times as many weather-related delays as SEA despite less total departures. 

 

 
 

A summary of the comparison between TAF and METAR for MDW and SEA for 
September–December 2011 is provided in Table 3. As reported in Table 3, each airport 
had 2,928 regularly scheduled METARs over the 4-month period. MDW had 3,302 total 
METAR reports of which 374 were special, unscheduled issuances. SEA had 3,845 total 
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METAR reports of which 917 were special, unscheduled reports giving SEA 2.45 times 
more special reports. Of the 3,302 METARs at MDW, the TAF correctly forecasted 
2,137 (65%) VFR conditions, 396 (12%) MFR conditions, 22 (0.6%) LIFR conditions, 
and 142 (4%) IFR conditions. Of the 3,845 METARs at SEA, the TAF correctly 
forecasted 1,799 (47%) VFR conditions, 540 (14%) MFR conditions, 68 (1.8%) LIFR 
conditions, and 53 (1.4%) IFR conditions. 

 
A summary of the TAF vs. METAR agreements for MDW for the last quarter of 

2011 is provided in Table 4. The METAR reported VFR conditions 2,322 times (70.3%), 
MVFR occurred 638 times (19.3%), LIFR occurred 70 times (2.1%), and IFR conditions 
occurred 272 times (8%). The TAF was correct in forecasting 92% of the time for VFR 
conditions, 62.1% for MVFR, 31.4% for LIFR, and 52.2% of the time for IFR. 

 
A summary of the TAF vs. METAR agreements for SEA for September–December 

of 2011 is provided in Table 5. The METAR reported VFR conditions 2,173 times 
(56.5%), MVFR occurred 1,042 times (27.1%), LIFR occurred 337 times (8.8%), and 
IFR conditions occurred 293 times (7.6%). The TAF was correct in forecasting 82.8% of 
the time for VFR conditions, 51.8% for MVFR, 20.2% for LIFR, and 10.9% for IFR. 

 
 
 
Table 1 

 
 
Number and Minutes of Delayed Flights by Category Departing Chicago-Midway (MDW) 
in 2011 by Month 

 
 

Type of Delay 
Carrier Weather NAS Security Late Aircraft 

 
Total Delaysa 

Month N Min. N Min. N Min. N Min. N Min. N Min. 
 

Jan. 1443 32498 103 2264 718 10829 0 0 1286 34565 4543 113843 
Feb. 1075 24793 74 2140 867 15958 6 54 1002 27836 3501 83975 
Mar. 1070 26391 56 2890 732 13164 8 108 957 32939 4297 98114 
Apr. 1341 33908 95 4900 1006 20971 2 79 1395 57945 4511 136827 
May 1344 31944 191 7275 955 21876 11 108 1416 66321 4872 151464 
June 1213 31719 167 8298 776 19178 0 0 1230 56022 4781 140095 
July 825 20681 73 3873 534 13093 1 9 835 32814 4376 101367 
Aug. 917 21644 155 7532 554 15235 0 0 947 35852 4258 108973 
Sep. 846 18968 69 2979 443 8437 1 125 833 29828 3957 92396 
Oct. 690 16284 24 1826 412 8194 3 66 588 15541 3753 69914 
Nov. 420 11743 24 1168 252 5007 1 7 377 11727 2950 20810 
Dec. 444 13425 42 2813 248 5759 4 46 406 13389 3342 62160 

Total 11628 283998 1073 47958 7497 157701 37 602 11272 414779 49141 1179938 
Note. N = Total number of flights per category. Source: U.S. Dept. of Transportation’s Bureau of Transportation 
Statistics (http://www.transtats.bts.gov). 
aTotal number of delayed flights and corresponding minutes represent all delays for 2011, including those not represented 
in the table. For example, NAS delays often include post-takeoff delays such as holds, which are not reported here. 



25 
 

VFR 2137 162 12 32 1799 406 152 93 
MVFR 165 396 20 76 332 540 63 115 
LIFR 0 3 22 22 21 34 68 32 
IFR 20 77 16 142 21 62 54 53 

Total 2322 638 70 272 2173 1042 337 293 

 

 
Table 2 

 

 
Number and Minutes of Delayed Flights by Category Departing Seattle-Tacoma (SEA) in 
2011 by Month 

 
 

Type of Delay 
Carrier Weather NAS Security Late Aircraft 

 
Total Delayeda 

Total 
Flightsb 

 

Month N Min. N Min. N Min. N Min. N Min. N Min. N 
Jan. 483 16145 37 1492 474 12960 2 27 471 16704 2617 60686 7585 
Feb. 496 17967 60 1903 628 15744 2 17 446 16455 2286 58723 6812 
Mar. 585 24723 17 571 651 17091 3 48 453 17750 2989 70508 7859 
Apr. 443 16365 17 403 475 12583 6 93 407 16351 2449 58327 7719 
May 572 17715 6 211 855 23402 8 109 376 14135 2579 54989 8537 
June 540 19896 10 741 677 14922 5 45 496 20458 3018 66396 9337 
July 563 20679 5 227 719 16923 3 48 515 22303 3022 68276 9828 
Aug. 548 19396 4 258 554 15177 8 93 399 17299 3335 65791 9735 
Sep. 376 14205 3 29 597 14444 1 24 214 8585 2251 39205 8558 
Oct. 340 13928 7 356 497 12731 2 22 251 9892 2129 43485 8337 
Nov. 425 18219 33 1130 615 16580 0 0 314 11572 2511 56141 7752 
Dec. 457 15405 32 493 709 16592 1 37 368 13348 2656 51385 8074 

Total 5828 214643 231 7814 7451 189149 41 563 4710 184852 31842 693912 100133 
Note. N = Total number of flights per category. Source: U.S. Dept. of Transportation’s Bureau of 
Transportation Statistics (http://www.transtats.bts.gov). 
aTotal number of delayed flights and corresponding minutes represent all delays for 2011, including those 
not represented in the table. For example, NAS delays often include post-takeoff delays such as holds, 
which are not reported here. bTotal flights represent all flights for each month and overall. 

 

 
 

Table 3 
 

Comparison between TAF and METAR for MDW and SEA (September–December 2011) 
 
 
 
 
 

TAF 

Airport 
Chicago-Midway (MDW)a Seattle-Tacoma (SEA)b

 

METAR METAR 
VFR MVFR LIFR IFR VFR MVFR LIFR IFR 

 
 
 
 
 
 
 

Note.aN = 3302 METARS of which 374 were special reports. bN = 3845 METARS 
of which 917 were special reports. The frequencies along the diagonals 
(underscored) represent the number of times TAF forecasts matched corresponding 
METARS. These are further elaborated in Table 4 and Table 5. 
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Report N %  N %  N %  N % 
TAFa 2137 92.0%  396 62.1%  22 31.4%  142 52.2% 
METAR 2322 70.3%  638 19.3%  70 2.1%  272 8% 

 

Report N %  N %  N %  N % 
TAFa 1799 82.8%  540 51.8%  68 20.2%  32 10.9% 
METAR 2173 56.5%  1042 27.1%  337 8.8%  293 7.6% 

 

 
Table 4 

 
TAF vs. METAR Agreements for MDW (September–December 2011) 

 
 

VFR MVFR LIFR IFR 
 
 
 
 

Note.aTAF percentages represent the ratio of TAF to METAR. For example, of the 
2322 VFR METARs, TAF was correct 2137 times, or 92%. bMETAR percentages 
represent the ratio of METAR frequencies (N) to the total number of METAR 
reports (3302). For example, VFR conditions were observed 2322/3302, or 70% 
of the time. 

 
 
 
Table 5 

 
TAF vs. METAR Agreements for SEA (September–December 2011) 

 
 

VFR MVFR LIFR IFR 
 
 
 
 

Note.aTAF percentages represent the ratio of TAF to METAR. For example, 
of the 2173 VFR METARs, TAF was correct 1799 times, or 82.8%. 
bMETAR percentages represent the ratio of METAR frequencies (N) to the 
total number of METAR reports (3845). For example, VFR conditions were 
observed 2173/3845, or 56.5% of the time. 

 
Inferential Statistics 

 
A  summary  of  the  results  of  the  Chi-square  analysis  and  agreement  statistics 

between TAF and METAR for MDW and SEA by month is provided in Table 6. As 
reported in Table 6, the relationship between TAF and METAR was statistically 
significant for each of the targeted months for both MDW and SEA. In September for 
MDW, χ2  = 403.87, df = 9, p< .0001, and for SEA, χ2  = 280.02, df = 9, p< .0001. In 
October for MDW, χ2  = 352.99, df = 4, p< .0001, and for SEA, χ2  = 204.03, df = 9, p< 
.0001. In November for MDW, χ2  = 606.85, df = 9, p< .0001, and for SEA, χ2  = 208.65, 
df = 9, p< .0001. In December for MDW, χ2  = 571.73, df = 9, p< .0001, and for SEA, χ2 

= 334.68, df = 9, p< .0001. 
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Airport N df χ2a Kappab 

Chicago-Midway (MDW) 3302 9 2021.27* 0.60* 
Seattle-Tacoma (SEA) 3845 9 1077.46* 0.35* 

 

September 821 9 403.87* 0.54* 830 9 280.02* 0.51* 
October 790 4 352.99* 0.71* 1040 9 204.03* 0.25* 
November 823 9 606.85* 0.63* 920 9 208.65* 0.35* 
December 868 9 571.73* 0.53* 1055 9 334.68* 0.30* 

 

 
Table 6 

 
Results of Chi-Square Analyses and Agreement Statistics between 
TAF and METAR for MDW and SEA by Month  (September– 
December 2011) 

 
 
 

Month 

 

Airport 
Chicago-Midway (MDW) Seattle-Tacoma (SEA) 

N df χ2a  Kappab N df χ2  Kappa 
 
 
 
 
 

Note.aChi-square reflects likelihood ratio. bKappa coefficient is an agreement 
statistic that varies between 0 and 1 where 0 = no agreement between the 
factors and 1 = perfect agreement between the factors. 
*p< .0001. 

 
 
 
Table 7 

 
Results of Chi-Square Analyses and Agreement 
Statistics between TAF and METAR for MDW and 
SEA Overall (September–December 2011) 

 

 
 
 
 
 

Note.aChi-square reflects likelihood ratio. bKappa coefficient is an 
agreement statistic that varies between 0 and 1 where 0 = no 
agreement between the factors and 1 = perfect agreement between 
the factors. 
*p< .0001. 

 
In addition to the Chi-square analyses, the Kappa coefficient also was calculated for 

each airport. The Kappa coefficient is an agreement statistics that varies between 0 and 1 
where 0 signifies no agreement between factors and 1 signifies perfect agreement 
between factors. As indicated in Table 6, the monthly Kappa coefficients were 
significant, which indicates there was a significant relationship between TAF and 
METARs at each airport. In September for MDW, Kappa = .54, p< .0001, and for SEA, 
Kappa = .51, p< .0001. In October for MDW, Kappa = .71, p< .0001, and for SEA, 
Kappa = .25, p< .0001. In November for MDW, Kappa = .63, p< .0001, and for SEA, 
Kappa = .35, p< .0001. In December for MDW, Kappa = .53, p< .0001, and for SEA, 
Kappa = .30, p< .0001. 
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A summary of the results of the Chi-square analysis and agreement statistics 

between TAF and METAR for MDW and SEA for the 4-month period, September– 
December 2011 is provided in Table 7. As reported in Table 7, the overall relationship 
between TAF and METAR was statistically significant. For MDW, χ2  = 2021.27, df = 9, 
p< .0001, and for SEA, χ2  = 1077.46, df = 9, p< .0001. The corresponding overall 
agreement statistics also were significant: For MDW, Kappa = .60, p< .0001; for SEA, 
Kappa = .35, p< .0001. 

 
Discussion 

 
When the study’s results are applied to the first research question, the relationship 

between METAR and TAF data from September–December 2011 at Seattle-Tacoma and 
Chicago-Midway, respectively, was statistically significant, which indicates that forecasts 
at both airports were related to actual weather conditions. The TAF-METAR relationship 
at MDW, however, was nearly twice as strong as the TAF-METAR relationship at SEA 
as given by the Kappa coefficient. One plausible reason why MDW had a better TAF- 
METAR agreement was because 70% of the weather conditions at MDW during the 
targeted 4-month period were VFR as opposed to only 56% at SEA. SEA also had LIFR 
conditions 337 times (9%) whereas MDW only had LIFR conditions 70 times (2.1%). 
The greater prevalence of VFR conditions at MDW coupled with the greater prevalence 
of LIFR conditions at SEA suggests that MDW’s forecasts would be more accurate than 
SEA’s  forecasts.  This  makes  sense  from  a  meteorological  standpoint  because  it  is 
typically easier to forecast good weather conditions (i.e., VFR) than bad weather 
conditions (i.e., IFR or LIFR). 

 
With respect to the second research question, because the forecasts at both airports 

had strong statistical agreements with the actual ground conditions, it appears that the 
weather forecasts at MDW and SEA were not a contributing factor to weather delays 
from September–December 2011. What was surprising, though, was that MDW’s Kappa 
agreement coefficient of .60 was nearly twice as high as SEA’s Kappa coefficient of .35. 
Although SEA had more challenging weather than MDW as evidenced by more LIFR 
conditions and less VFR conditions, and SEA also had more total departures than MDW, 
SEA still had less weather related departure delays than MDW. Thus, we expected SEA 
to have a higher Kappa coefficient than MDW. 

 
A plausible explanation for this finding is the number of METAR reports. 

Referencing Table 6, the number of METARs at MDW and SEA for the month of 
September was nearly the same at 821 and 830, respectively. The corresponding Kappa 
coefficients also were similar at .54 and .51, respectively. However, for October– 
December, SEA had considerably more METAR observations than MDW, which equated 
to lower Kappa coefficients. The Kappa coefficients for MDW during the last 3 months 
were much higher than those for SEA. These findings suggest an inverse relationship 
between the number of METARs and the Kappa coefficient: As the number of METARs 
increases, the agreement statistics between TAF and METAR decreases. This inverse 
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relationship  is  plausible  when  the  special  METAR  (SPECI),  which  is  non-routinely 
issued when weather is changing rapidly, is taken into consideration because it is easier 
to forecast weather that is relatively constant than weather that is changing rapidly in a 
short time period. More concretely: Unchanging, good weather (VFR), which was the 
general case at MDW, is much easier to forecast than rapidly changing bad weather 
(SPECI with LIFR), which was the general case at SEA. 

 
Accenting  the  TAF-METAR  relationship  discussion,  the  data  also  suggest  that 

during the targeted 4-month period SEA, when compared to MDW, was challenged in 
forecasting IFR and LIFR conditions, especially when conditions changed rapidly. For 
example, referencing Table 4 and Table 5, SEA correctly forecasted LIFR conditions 
20% of the time vs. 31% of the time for MDW, and SEA correctly forecasted IFR 
conditions only 11% of the time compared to 52% of the time for MDW. 

 
In conclusion, the data indicate that a plausible explanation for Chicago-Midway’s 

weather-related departure delays compared to that of Seattle-Tacoma’s is not poor 
forecasting because the results reflect the opposite: MDW had the higher frequency of 
weather-related delays but it also had a stronger agreement between TAF and METAR 
when compared to SEA. Although surprising, the data provided plausible explanations 
for the outcome. A better understanding of the reasons for the weather related departure 
delays at MDW and SEA may be possible with further research on what causes the 
weather delays, given that the forecasts were not a contributing factor. Replicating the 
current study using 2012 and 2013 data, and data from a time period other than 
September–December could reveal further insight and possibly different results. Because 
of the high number of unscheduled SPECI reports (particularly at SEA), it also may be 
beneficial to replicate the study with only regularly scheduled METAR reports. This 
modification may reveal different results because the rapidly changing weather between 
observations would be not taken into consideration. 

 
Limitations and Delimitations 

 
Limitations refer to circumstances or events that are beyond the control of the 

researcher. One limitation to the current study is that we used data provided by the 
respective  airports.  Other  studies  that  use  different  weather  data  (e.g.,  “dominant” 
weather only might be reported) might get different results. A second limitation is TAF 
data  were  provided  directly  from  the  targeted  airports  and  were  not  prepared  by  a 
different airport. Therefore, any subsequent study involving an airport that relies on TAF 
data from a region and not directly from the airport itself might get different results. A 
third limitation is that our findings are relevant to U.S. TAF data and not to the European 
model, which issues short TAFs (Jacobs, 1998). A final limitation is that the findings are 
reflective of the last quarter of 2011, not the entire year. Thus, similar studies that use an 
entire year’s worth of data might get different results. 
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Delimitations refer to circumstances or events the researcher imposes on the study 

that further limits the generalizability of the results. One delimitation of this study is that 
although TAF reports include wind, visibility, weather, and cloud reports, we considered 
only visibility and clouds. Furthermore, only the more severe weather phenomenon was 
considered.   For   example,   if   thunderstorms   and   rain   were   reported,   then   only 
thunderstorms were included. Thus, other studies that use all of the data provided by TAF 
might not get the same results. A second delimitation is that we restricted METAR and 
TAF data to only September–December of 2011. Other studies involving the same 
targeted airports but use historical METAR and TAF data from a different time period 
might not get the same results. A third delimitation is that we focused on the two airports 
with the least and most delays in 2011. Studies that use the same selection criteria for a 
different time period will not necessarily involve the same airports. A final delimitation is 
that we restricted this study to weather-related delays on departure. Studies that focus on 
weather-related delays on arrival might not get the same results. 
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