INTRODUCTION. Basic measurement problems continue to plague sociologists. This condition came largely by historical accident, when social reformers captured the infant field. These professionals presented themselves as scientists, but restricted their research efforts almost exclusively to descriptive surveys, relying on nominal and ordinal level measurement of culturally defined and reified social categories. Though such measurement produced data and permitted tests of hypotheses, findings tended to be historical rather than theoretical. This did little to strengthen measurement, and eventually sociologists succumbed to "classical test theory," a set of measurement definitions and notions which, while invalid, enabled researchers to mislead all concerned about the validity of their findings. I will recommend three actions: 1) to adopt the general science measurement model; 2) encourage a reductionist general systems approach to sociological concepts; 3) encourage selective recruitment of sociologists with stronger mathematical and scientific backgrounds.

Comte, a great admirer of Newtonian mechanics, coined the term sociology "to designate social physics (Comte 1830 42)." But in the United States, sociology was dominated by social reformers who adopted a scientific "front" only after World War I as a strategem for achieving academic recognition (Dynes 1974 173). Many measurement problems were consequently either ignored or so transmogrified that modern researchers may not realize that the original measurement problem remains unsolved.

MEASUREMENT Measurement is merely a means of storing information about empirical attributes, just as a child's height can be "mapped" to the wall of a house by placing a pencil mark where his head reaches. Such measures can be retrieved later, as when the child is shown how much he has grown. When the "measurement problem" has been solved, there is 1) a measurement operation \( M \) which can map any given empirical attribute, \( e_j \), to another empirical attribute, \( n_j \), for storage, and 2) an inverse operation, \( M^{-1} \) which can map the stored representation or measurement back to the original attribute without loss of information (McGinnis 1965 276; Muir 1972 47). Such operations can be represented mathematically as functions which establish a one-to-one correspondence between empirical attributes and measurements:

\[
n_j = M(e_j); \quad e_j = M^{-1}(n_j)
\]

LEVELS OF MEASUREMENT Most sociologists recognize S.S. Stevens' typology for levels of measurement (1946). 1) If mapping is merely to categories and back, the scale level is nominal; 2) if ranked categories, the scale is ordinal; 3) if to evenly spaced ranked categories, the scale is interval; 4) if to evenly spaced ranked categories with a non-arbitrary zero category, the scale is ratio. The test of scale level is to find what transformations of the scale points can be made, because the category names of nominal, ordinal, interval, and ratio scales are replaceable with those produced by any one-to-one, monotonic, linear, or proportionality transformation, in that order (Coleman 1964 65; McGinnis 1965 278–287).

Such tests assume that the instrument being evaluated is measuring an empirical attribute that is explicitly theoretically related to the same or more usually a different empirical attribute measured by a second instrument whose scale type has already been established. The evaluation of the scale level of an instru-

FREE INQUIRY in Creative Sociology Volume 8 No 2 November 1980 113

BECALMED IN MURKY WATERS: MEASUREMENT PROBLEMS IN SOCIOLOGY
Donal E. Muir, University of Alabama
ment rests on whether the given transformations interfere with the theory's ability to account for the measurements made by the established instrument. This approach clearly assumes the existence of an instrument with a known scale level, preferably ratio.

The classic analysis of logic and operations required to establish such primary instruments was made by Campbell (1928). He illustrated with a two-pan balance, and noted how the user could ascertain which of an arbitrary set of masses, such as pebbles, were heavier or equal in mass to others in the comparison operation and then could calibrate the scale by defining the unit of mass as equal to one of a set of equal stones, using two to define two units in the combination operation. Since an absence of pebbles would non-arbitrarily represent zero mass, the user of the scale could conclude that the balance and calibrated stones constituted an instrument of ratio level. Such primary instruments could then be used to evaluate the scale level of other instruments measuring theoretically related empirical attributes. Since Newtonian mechanics relates all of its theoretical concepts such as velocity, acceleration, force, and density to mass, length, and time, primary standard instruments are required only for mass, length, and time.

DISCUSSION. Campbell's exercise with the balance appears simple enough. Why are not comparable instruments commonplace in sociological research? The early capture of sociology by reformers provides a reasonable thesis. Nominal or ordinal typologies like rich-poor, male-female, and black-white, provided an easy vehicle to communicate the need for reform to the public, and the resulting numbers and associated statistical techniques served to reinforce an image of sociology as a "science actively engaged in research." The era since World War I can be summarized as the period in which sociology survived as a profession largely by conducting descriptive surveys and gathering case histories of interest to politicians, merchants, and the public, but lacking in scientific interest. This thesis could also account for the continuing emphasis on age, sex, ethnicity, education, occupation, income, and political and religious affiliation even when these variables have no direct theoretical connection with the dependent variables under study (Blalock 1977 6). Given the inertia of social systems, such reports were perhaps useful for short term planning. But they did little to encourage the development of a robust measurement methodology.

In practice, the opposite occurred. Sociologists increasingly endorsed the invalid notions of "classical test theory" which had originated in psychology (Muir 1977a). This approach to measurement produced a clear break with the established measurement practices of the natural sciences. It also produced such a jumble of basic measurement concepts that today it is often very difficult to exchange even simple measurement ideas among sociologists.

The frailty of sociological measurement has fostered many individual careers. LaPiere (1969) stated the case: "A concerted re-examination of the whole question of the validity of the research methods that have brought sociology to its present affluence might well bring discredit to a large part of the sociological findings that three decades of prodigious labor have produced, and in the process, undermine the confidence of the general public, the various foundations, and the Federal Government in the fruitfulness of sociology and indeed, of all the social sciences."

Perhaps there never was much
FREE INQUIRY in Creative Sociology  

confidence in sociology. Its non-threatening reputation as a "soft science" made it ideal for sponsored surveys which could be used at the moment to pacify interest groups that "something is being done", to bolster prior decisions, or cheaply gather opinion or demographic data. It is notable that problem-oriented surveys continue as a principal source of funding and opportunity for publication in our contemporary "non-consensual science", giving little impetus for care and concern for measurement.

FIRST RECOMMENDATION

To strengthen sociological measurement, we must adopt a valid measurement model. Such a model has long been available in the form of the general science measurement model. Suppose we want to evaluate instrument \( M \) which on its \( i \)th application to a value, \( e_i \), of an empirical variable, produces the measurement \( n_{ij} \):

\[
 n_{ij} = M(e_i) \]

To evaluate, we compare the performance of this instrument with that of a standard instrument which, by consensus, defines the parameter value of the empirical variable: 

\[
 P_j = M_s(e_j) 
\]

The general science model merely states that any measurement produced by the instrument being evaluated will equal the parameter value plus an error:

\[
 n_{ij} = P_j + \text{error}_{ij} \]

As simple as it appears, this model is a firm basis for the rigorous definition of fundamental measurement concepts. These definitions relate to point-by-point evaluations of instruments (for over-scale indices, see Muir 1979). The term "E" represents the "expected value", e.g., the arithmetic mean. All necessary calibration procedures are completed before making measurements.

Precision (reliability) = the degree to which the variability of the theoretical universe of measurements approaches zero. If an instrument is perfectly precise (reliable), each measurement is equal to the expected value of the theoretical distribution: 

\[
 E(n_{ij}) = P_j 
\]

Validity = the degree to which the expected value of the theoretical universe of measurements approaches the parameter value. If an instrument is perfectly valid, the expected value of measurements is equal to the parameter value: 

\[
 E(n_{ij}) = P_j 
\]

Accuracy = the degree to which the variability and expected value of the theoretical universe of measurements approach zero and the parameter value respectively. If an instrument is perfectly accurate, each measurement is equal to the parameter value: 

\[
 n_{ij} = P_j 
\]

Since these definitions and the basic general science measurement model require standard instruments, it follows that a strengthening of sociological measurement forces us to develop such instruments. This task, from which the puffery of "classical test theory" has too long diverted us, must have highest priority. This undertaking will not be easy or popular, given the present confusion concerning measurement in sociology. Even these three concepts of precision, validity, and accuracy are widely confounded (Muir 1977b).

SECOND RECOMMENDATION

Because our measurement difficulties go with a lack of effective theory, we should discard the mysticism concerning social systems. More powerful predictive analogs of social systems can be created by viewing them as information processors, rather than as unique entities which possess "free will". Increasing scientific convergence appears in the works of researchers in diverse fields (von Neumann 1958; Homans 1964; Wiener 1965; Skinner 1971; Wilson 1975 and Miller 1978). After we
FREE INQUIRY in Creative Sociology
develop a rigorous theoretical
foundation to describe the compo-
ents for social systems, from ants
to humans, we must attempt to
model their interactions. Sociolo-
gists can profit from general sys-
tems theory and specific theories
on information processors, such as
information theory.

THIRD RECOMMENDATION
. We could assure the more gen-
eral participation of sociologists
in these major scientific develop-
ments by recognizing that our
measurement theory difficulties
stem from measurement complexity,
and not from the sui generis char-
acter of our subject. Why not se-
lectively recruit future sociolo-
gists for their mathematical abili-
ty, scientific interest, and intel-
lectual curiosity? This would re-
quire reshuffling of professional
priorities. It is encouraging to
note that the American Sociologi-
cal Association has taken tenta-
tive steps toward accreditation
and certification (Footnotes April
1979 T).

REFERENCES
.Blalock H M 1977 Can sociology
ever become a discipline? Need for
better measurement conceptual-
zation & attention to generalizabil-
ity. Southern Sociological Society
Meeting
.Campbell N R 1928 Measurement
& Calculation. London Longmans
Green
.Coleman J S 1964 Introduction to
Mathematical Sociology. New York
Free Press
.Comte Auguste 1830 Cours de
Philosophe Positive. In Making of
Society, R Bierstedt ed. New York
Modern Library
.Dynes, Russell R 1974 Sociology
as a religious movement: thoughts
on its institutionalization in the
United States. American Sociologist
9 169-176 Nov
.Homans G C 1964 Bringing men
back in. American Sociological
Review 29 809-818 Dec
.LaPiere R T 1969 Comment on
Deutscher's looking backward.

American Sociologist 4 41-42 Feb
.McGinnis R 1965 Mathematical
Foundations for Social Analysis.
New York Bobbs Merrill
.Miller James Grier 1978 Living
.Muir Donal E 1972 Mathematical
systems approach to a synthesis
of methodology. Sociological Meth-
ods & Research 1 39-63 Aug
.1977a Critique of classical
test theory. Psychological Reports
40 383-386 Apr
.1977b Disentangling instru-
ment reliability, validity, and ac-
curacy in the social and behav-
ioral sciences. Sociological Sympos-
ium 20 61-72 Fall
.1979 Toward an interscience
reconciliation of correlational in-
dices of over-scale precision, val-
idity & accuracy. Southern Socio-
logical Society Meeting
.Skinner B F 1971 Beyond Freedom
& Dignity. New York Knopf
.Stevens S S 1946 On the theory
of scales of measurement. Science
103 677-680
.von Neumann J 1963 Computer and
the Brain. New Haven Yale U Press
Cambridge Mass. MIT Press
.Wilson E O 1975 Sociobiology:
New Synthesis. Cambridge Harvard
U Press

ERRATUM:
In Volume 7, No 2, November
1979, in the Table of Contents the
author listing for "Sociology &
Social Work: Marriage or Di-
vorce?" should be:

Richard Enos.